JERSEY VILLAGE MIXED-USE / TOD PLAN

PHASE I FEASIBILITY **OCTOBER 15, 2009**

INTRODUCTION

Pending roadway infrastructure improvements such as the Jones Road extension coupled with future commuter rail service adjacent to the study area (Figure 1, below) will transform this area from its current development pattern into a new environment. The question is; can this transformation be harnessed to take advantage of the substantial future investment in streets and rail. By taking a proactive approach and identifying the development potential for this area, the City of Jersey Village will be in a position to manage the quality of development that will ensue. Furthermore, the City will be able to create the framework to allow for a sustainable development option that will have efficient utilization of public services.

The purpose of this memorandum is to present the Project Team's findings in accordance with the tasks associated with Phase 1 of the TOD Feasibility Study. The background, findings and recommendations are detailed in this memorandum.

STAKEHOLDER COMMITTEE

Meaningfully engaging the public, property owners, land developers and interested agencies is a key tenet of the Jersey Village Mixed-Use/TOD Plan. A stakeholder committee that represents a broad cross section of property owners, developers, brokers, citizens and staff members is a crucial first step. The addition of representation from county and regional authorities that have an interest in transit and land development provided perspectives that are not typically found from resources within the community. The City Council also took place in the stakeholder process in addition to the following persons on this committee:

Table 1. Stakeholder Committee Members

NAME	COMPANY	ADDRESS	PHONE #	
Rose Hernandez	Harris County		(713) 755-4015	
e-mail: rose.hernandez@cjo.				
Patrick Porzillo	METRO	1900 Main Street Houston, TX 77002	(713) 739-6021	
e-mail: patrick.porzillo@ride	emetro.org			
Mike Castro	Jersey Village	16501 Jersey Drive Jersey Village, TX 77040-1999	(713) 466-2109	
e-mail: mcastro@ci.jersey-vi	llage.tx.us			
Maureen Crocker	Gulf Coast Rail District	6922 Old Katy Road Houston, TX 77024	(713) 247-1093	
e-mail: maureen.crocker@gcfrd.org				
Gabriel Johnson	TxDOT-Houston	P.O. BOX 1386 Houston, TX 77251-1386	(713) 802-5031	
e-mail: gjohns@dot.state.tx.us				
Elvia Cardinal	TxDOT-Houston	P.O. BOX 1386 Houston, TX 77251-1386	(713) 802-5501	
e-mail: ecardin@dot.state.tx.	us			
Pamela Rocchi	Harris County Precinct 4	22540 Aldine Westfield Houston, TX 77373	(281) 353-8100	
e-mail: procchi@hcp4.net				
Pat Waskowiak	H-GAC	3555 Timmons Lane Suite 120 Houston, TX 77027	(713) 993-2478	
e-mail: pat.waskowiak@h-ga	ic.com			

Phase 1 Feasibility Memo

Table 1. Stakeholder Committee Members (continued)

NAME	COMPANY	ADDRESS	PHONE #	
W.R. "Bill Rowden	Cy-Fair Chamber	10960 Millridge North Drive Suite 208-B Houston, TX 77070	(281) 890-3500	
e-mail: browden@apthomese	earch.com			
Erin Al-Salman	Cy-Fair Chamber	11734 Barker Cypress #105 Cypress, TX 77433	(281) 373-1390	
e-mail: erin@cyfairchamber	.com			
John Fourqurean, Ed.D.	CFISD	P.O. Box 692003 Houston, TX 77269-2003	(281) 517-2105	
e-mail: john.fourqurean@cfi	sd.net			
Denise Maggart	NCI Company	10943 N Sam Houston Pkwy W Houston, TX 77064	(281) 897-7788	
e-mail: dmaggart@ncilp.com				
Johnny Freeman	Hubco, Inc.	11714 Charles Rd Houston, TX 77041	(713) 937-1100	
e-mail: jfreeman@hubcoinc.	net			
Garfield Edmonds	Alloy & Stainless Fasteners, Inc.	11625 Charles Rd Houston, TX 77041	(713) 466-3031	
e-mail: gedmonds@goasf.com				
Pattie Chang	VIP Management Co.	12989 Bellaire Blvd, #12B Houston, TX 77072	(281) 988-9800	
e-mail: pattiechang@yahoo.	com			
Rick Lawler		1470 Eldridge Parkway Houston, TX 77077	(713) 292-7418	
e-mail: rlawler105@aol.com				
Keith Edwards	Caldwell Realtors	7904 N. Sam Houston Pkwy W Houston TX 77064	(281) 664-6633	
e-mail: kedwards@caldwello	cos.com			

Phase 1 Feasibility Memo

STAKEHOLDER COMMITTEE INVOLVEMENT

The stakeholder committee was involved at several stages during the Phase 1 of the TOD Feasibility Analysis. After conducting analysis of preliminary barriers to implementation, the consultant team met with available stakeholders in an individual setting to gather pertinent project information and impressions from each agency/stakeholder before proceeding with the environmental analysis and market forecast. Stakeholder reactions from the first round of meetings were summarized and presented to staff and City Council before the issuance of Notice to Proceeds 3 and 4. Overall, the project received significant support from regional transportation stakeholders and the land owners within the immediate proximity of the Jones Road extension/Potential TOD Site.

The reactions gleaned from the individual stakeholder groups helped inform the process as the environmental analysis and market forecast aspects of Phase 1 were conducted. Based upon the needs of the study effort a second stakeholder meeting was held to review the preliminary findings of the environmental records review and to validate the preliminary assumptions contained within the market forecast. This meeting was attended by several of the regional transportation agencies as well as representatives from the major landowners within the immediate project study area. Overall, stakeholder comments suggested that the project was indeed on course with the assumptions and types of analysis proposed and that the rail station was still a viable alternative from a regional perspective.

Based upon the input received, the consultant team feels that continued interaction with the stakeholder group would provide an opportunity for more constructive dialogue during future phases of analysis. Additions to the stakeholder group might include additional representation from the resident of Jersey Village and continued participation from council members and planning and zoning board members. Details pertaining to future involvement will be finalized as a part of the outreach strategy specific for Phases 2 and 3.

DATA COLLECTION AND REVIEW

The consultant undertook an initial review and analysis of the Mixed-Use/TOD Area, including planned and ongoing development projects within and adjacent to the Mixed Use/TOD Area, the 290 Corridor Plan, other prior corridor planning initiatives. The following sections detail findings as they pertain to Current Land Use, Zoning, Transportation, Utilities, Environment and Market.

CURRENT LAND USE

Parcels within the study area have numerous land uses as illustrated by the Current Land Use Map (Exhibit A). The following table defines the land uses by acreage.

Table 2. Current Land Use

CURRENT LAND USE	AREA (acres)
Agricultural	119.8
Commercial	405.0
Governmental	15.7
Industrial	72.6
Residential	76.1
Utilities	11.6
Vacant	73.9

Containing some important businesses, but generally underutilized, the majority of land uses in the study area could be characterized as commercial and industrial. Residential uses dominate the frontage of Fairview Street and dot the landscape throughout the study area. Vacant and agricultural property highlight key parcels for development/re-development. Governmental represents current parcels that are being used for institutional or municipal purposes; some of these may be opportunity sites for development.

Findings

The current mixture of commercial, residential, governmental, industrial and vacant land uses do not represent a significant obstacle to the development of a mixed-use/TOD development. However, the current land uses and potential land uses as dictated by existing zoning do not represent a high enough density to support transit oriented development.

Recommendation

Identify the highest and best use of the area through stakeholder participation in a planning process that identifies market opportunities, leverages transportation and municipal infrastructure investments with sustainable development.

(3)

JERSEY VILLAGE MIXED-USE / TOD PLAN

Phase 1 Feasibility Memo

ZONING

The City of Jersey Village currently employs a district-based zoning mechanism. The study area lies within the *District H* which is designated Industrial (Refer to Exhibit B-Existing Zoning Map). Permitted uses within this district are broad and include a mixture of industrial, office and retail uses. The existing zoning district does not impose a height or building area limitation and follows the typical suburban-style setback regulations, which are found in subsection 14-88(b) of the City of Jersey Village Zoning Ordinance.

Findings

The current zoning district limits the ability for the area to develop in a mixed-use or transit oriented development manner in many ways, namely:

Does not permit residential uses
Does permit conflicting industrial uses
Does not require public spaces
Does not require shared parking
Setback standard does not create a walkable frontage
Does not require adequate public right-of-way for connected street system

Overall, the existing zoning district does not create the kind of adjacency predictability for sustained investment needed to attract mixed use/TOD type developers to the area.

Recommendation

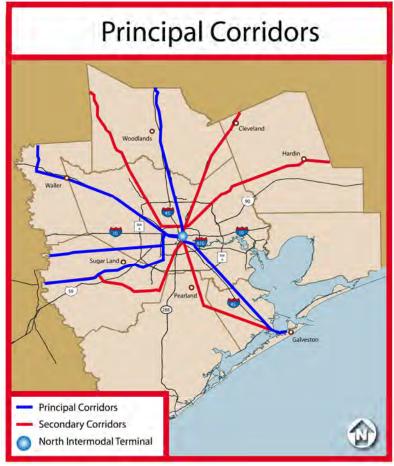
Section 14-84 of the City of Jersey Village Zoning Ordinance allows for the City Council to amend the zoning districts at any time. The scope of the phases 2 and 3 of this study have the potential to illustrate the highest and best use for the study area and define a zoning overlay to facilitate the development by being an invitation to developers to invest in an area with assurance of adjacent development character and quality. It is our recommendation that the City of Jersey Village explore various interim development control measures in order to discourage haphazard and piecemeal development that may detract from the intended character and development patterns being sought. This will enable the preservation of opportunities for TOD development and increased quality development until later phases of this initiative are undertaken to create a master plan and a comprehensive revision of regulations necessary to implement the new master plan.

Phase 1 Feasibility Memo

TRANSPORTATION

The roadways within the study area are constructed of two lane asphalt with open drainage ditches. These right-of-ways are owned and maintained by Harris County. The County will begin construction of the Jones Road extension later this year adding the first four lane divided roadway built with concrete and storm drainage to the study area.

Direct access to the site is achieved from US 290 frontage roads. FM 529 (Spencer Rd), a six lane divided arterial, provides parallel access to the south. Currently no transit or bicycle/pedestrian access is granted to the study area. Traffic counts of major thoroughfares that impact the study area are listed in the following table.


Table 3. Traffic Counts - Major Thoroughfares

THOROUGHFARE	COUNTS
Jones Road	36,000 VPD
FM-529 (Spencer Rd)	43,000 VPD
US 290	140,000 VPD

Summary of Transportation Agency Plans that Impact Study Area

The H-GAC Regional Commuter Rail Connectivity Study concluded that the US-290 corridor was one of the top two candidates within the region for the implementation of Long-Distance Commuter Rail, see figure 2 below. Prior to the conclusion of this Study, other studies have suggested that several modes of transit will be necessary throughout the corridor to meet the latent demand for transit. Taking that eventual solution into account, several of the region's transportation agencies are re-examining their plans for the US-290 Corridor including Harris County, METRO, TxDOT, and the Gulf Coast Freight Rail District. These agencies are meeting on a semi-regular basis to make decisions about the rail transit options that will be developed within the corridor alongside the freeway expansion that is currently under design.

Figure 2. Principle Commuter Rail Corridors, Courtesy H-GAC

In March of 2009, the Gulf Coast Freight Rail District was awarded \$2 million in American Recovery and Reinvestment Act funds to study and design the implementation of Long Distance Commuter Rail within the US-290 corridor. Subsequent discussions with the Gulf Coast Freight Rail District and Union Pacific Representatives suggest that at such a time when Commuter Rail is instituted within the corridor, the Track Rights would be sold to the operator of the Commuter Rail Service. The Gulf Coast Freight Rail District moved to negotiate the Advanced Planning and Preliminary Design contract during their August 2009 Board Meeting. At such a time as deemed appropriate by the Gulf Coast Freight Rail District Interim Executive Director, the City of Jersey Village has been invited to present the findings of this initial Feasibility Analysis to the Rail District's Planning Subcommittee.

Long Distance Commuter Rail
Suburban Commuter Line
Urban Light Rail Transit
Intermodal Station

Figure 3. Intermodal Stations Defined by H-GAC Commuter Rail Study, courtesy H-GAC

METRO is currently examining opportunities for a type of Commuter Rail that would likely cover a shorter distance with station locations closer together. This service will likely be a smaller vehicle than a typical long distance commuter rail locomotive, something similar to the current LRT cars or Austin's Leander Rail Line. Current plans for a 50-foot window of opportunity within the US-290 corridor expansion would allow for METRO to operate south of the existing Eureka Railroad Subdivision and the proposed Hempstead Managed Lanes Highway corridor. As shown in Figure 3, a station location in Jersey Village at the proposed location could be used to facilitate transfers between these two types of rail technology since the Long-Distance Rail would stop once every five to seven miles with the Beltway and Interstate 610 being logical locations for a station.

Finally, the Harris County Toll Road Authority is still examining the implementation of a managed lane facility within the Hempstead Highway Alignment of the corridor. The schedule

Phase 1 Feasibility Memo

for this project is not known at this time as the likelihood of financial feasibility in the near term has not been established. However, the long term corridor strategies would necessitate the construction of this facility, and bearing that eventual plan in mind when designing the station location for Jersey Village will be paramount to providing access to every type of transportation facility available for the site.

Findings

The study area is at the confluence of significant roadway, highway and transit improvements. The City of Jersey Village's current development regulations and provisions for right-of-way preservation will not facilitate capture of these investments and leverage them for long term sustainability. The absence of a comprehensive plan or thoroughfare plan permits other agencies to use typical design standards for transportation improvements, thus they will not the unique character and desires of the citizens of Jersey Village.

Recommendations

Leveraging and having design and alignment influence upon these transportation improvements begins with coordination. The Mayor's recent meeting with County Officials and staff meetings with the Rail District was a great step forward in this coordination effort. The subsequent exploration of a master plan for the study area will assure that these transportation improvements meet the desires of the community and support land development opportunities.

(3)

JERSEY VILLAGE MIXED-USE / TOD PLAN

Phase 1 Feasibility Memo

UTILITIES

The March 2006 Annexation Inventory Plan created by Brooks & Sparks for the City of Jersey Village provides the following descriptions:

Water Production and Distribution Systems

Currently there is not a complete water distribution system in the study area. Various existing and planned lines will provide minimal service. The city does have production capacity to serve the area, but distribution systems will need to be constructed and provisions made to strengthen pressure to the area.

Wastewater Collection System

There is no existing sanitary sewer system in the study area. Currently private septic tanks on each property provide wastewater disposal. The city does have capacity within the system, but collection is not provided.

Drainage

The study area drains across land in a sheet flow pattern to the existing earthen roadside drainage ditches. There is no existing underground storm sewer system.

Findings

To fully serve the study area the Brooks & Sparks report concludes that almost \$10,000,000 worth of infrastructure improvements will be needed.

Recommendations

The Annexation Inventory Plan only considered one side of the balance sheet that a city should use to make an annexation decision, the cost element. As identified in the land use and zoning sections of this report there is ample opportunity for the study area to develop and re-develop in a manner that result in a significant boost to the property and sales tax revenues for the City. The Market Analysis conducted as a part of this Phase provides general guidance as to the amount of development that could reasonably be accommodated within the study area over the next twenty years. More details about the findings and assumptions of the Market Study can be found on Page 14 as well as the full Market Analysis Report contained in Appendix E.

(3)

JERSEY VILLAGE MIXED-USE / TOD PLAN

Phase 1 Feasibility Memo

ENVIRONMENT

The consultant team undertook an analysis of the environmental constraints that are known within the project's study area through several resources. First, the team consulted local, regional, statewide, and national databases available to conduct a high level constraints analysis. A map of the existing natural constraints, including vegetation patterns and floodplain locations is included in Exhibit C. The most prevalent natural resources in the study area include over 40 acres of mixed conifer and deciduous forest, a tributary of White Oak Bayou and various microenvironments.

Second, the consultant team surveyed existing Environmental Impact Statement data that was compiled by the Texas Department of Transportation during their analysis of the US 290 EIS process. Those maps indicated that several parcels within the study area would be either whole or partial acquisitions during corridor expansion (http://www.my290.com/environmental/). The information pertaining to the ultimate Right-of-Way limits for the US-290 Multi-Modal Corridor will be carried forward in any future planning efforts to ensure that appropriate buffering of uses occurs along the highway.

Finally, the consultant team requested a Phase 1 (ASTM) Environmental records review for the study area to highlight any known environmental concerns that could preclude future redevelopment. The Executive Summary, Oil and Gas Well Report, and Water Well Report can be found in Appendix D. The full details of this report have also been provided to the City of Jersey Village for future use as needed.

Findings

When developing concept plans for the Study Area in Phase 2, the City will want to establish development patterns that highlight the natural amenities that currently exist, while minimizing potential negative impacts to sensitive ecosystems or species through design concepts that emphasize the character of the surrounding and meet the development needs.

The TxDOT sponsored EIS suggested that several parcels within the Study Area would be acquired in their entirety since the Right-of-Way impact is such that the buildings on the property would be impacted. Some examples include: Sparkle Sign, Phobia Haunted House, Gulf Pacific Rice Milling, and Arsham Industries Metal Recycling Center. Meanwhile, other properties that could have partial/whole acquisitions include: John Eagle Honda, Silver Eagle Distributing, and All-Safe Mini Storage. This list is not intended to be all-inclusive; however, it provides a frame of reference for the scale of the Right-of-Way that is required for the widening of the US-290 corridor.

The study team has only conducted a cursory review of the known environmental conditions within the Study area and as such no mitigation strategies or implementation steps are proposed within the scope of this section of the report. More detailed, Phase II ASTM Environmental Reviews would be required for certain properties within the study area before certain types of redevelopment could occur and these incidents are noted in the following text. This list is not intended to be all-inclusive, rather to highlight some of the known constraints that will become a factor in further planning initiatives.

Phase 1 Feasibility Memo

In conducting the Environmental Records Review, the consultant team noticed that four incidents of toxic waste detection have been reported in the past within proximity to the study area. Each of these incidents has been noted within national and state databases and all reported indications are that proper mitigation has been completed. These sites should be considered mitigated in their current state and use, however, future development may warrant further site specific analysis (a Phase II Environmental Analysis).

Many properties within the study area generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act. Additionally five sites were previously noted to have reported releases of oil or other hazardous materials. Several leaking petroleum storage tanks were noted within proximity of the study area. Each of the eleven proximate sites have been reported as final concurrence having been issues, thereby closing the case at the State level. Finally, several of the uses within the Study Area are required to submit reports under a litany of federal and state requirements so that residents are made fully aware of any potentially hazardous situations. The sites discussed within this paragraph will be noted during further planning efforts to account for screening, buffering, and any appropriate mitigation/remediation steps.

Recommendations

Creative transitions between the highway facilities and future development will be necessary in order for the City of Jersey Village to realize the full potential of development in and around a potential commuter rail station. By planning for the successful transition from highway frontage to proposed developments through open space, buffering, and context sensitive streets, the City can help to facilitate those transition areas in an effective manner. Future development plans should also consider access to the natural assets that are present within the currently undeveloped portions of the Study Area with public easements, parks and viewsheds as well as through the implementation of a tree preservation policy where appropriate.

Sensitive areas, such as those highlighted as parcels where Toxic Waste has previously been discovered, should be examined when planning for the redevelopment of this area. The majority of the environmental constraints identified within the Study Area have been mitigated, or do not currently present a substantial concern, however, careful planning will help to ensure that future land uses are appropriately positioned within the area. Additionally, land uses near highway and utility Rights-of-Way, should be appropriately buffered and transitioned to ensure the overall health, safety, and welfare of future residents.

Phase 1 Feasibility Memo

MARKET

Near-Term

As the nation struggles to emerge from recession, there is no question that the Houston Region, Harris County, and Jersey Village have felt the impact. The numbers tell the story, as job growth has slowed, sales tax revenue has flattened, and development has more or less come to a halt (refer to Table 4). That having been said, the impacts in the Houston region have been less profound than in many other parts of the state and nation, and the Houston area should be well positioned to bounce back. The structure of the local economy and area demographic trends suggest more rapid growth over the next twenty years than in much of the country, and relatively low current market values, competitive labor costs, and a relatively modest overall tax burden all indicate a cost environment that is accommodating to future development and growth. When the region's reputation for being "business friendly" is factored into the mix, the Houston area will be one of the most attractive regions for development in the nation for the foreseeable future.

Table 4. Market Indicators

JERSEY VILLAGE			HARRIS COUNTY		
YEAR	SALES TAX REVENUE	SINGLE-FAMILY PERMITS	SINGLE-FAMILY PERMITS (000s)	UNEMPLOYMENT RATE	
2001	\$2,143,668	30	19.9	4.7%	
2002	\$1,726,291	54	23.0	6.1%	
2003	\$1,595,846	34	26.4	6.8%	
2004	\$1,759,527	5	28.0	6.3%	
2005	\$1,720,542	23	32.4	5.7%	
2006	\$2,371,199	38	33.0	5.1%	
2007	\$2,305,197	36	23.9	4.3%	
2008	\$2,466,915	14	14.8	4.8%	

Longer-Term

If Jersey Village is to take maximum advantage of impending regional growth, a development orientation that reflects the changing market structure is desirable. For example, a number of trends are beginning to influence land development and urban revitalization in the United States, including:

Demographics, specifically smaller household sizes;
Changes in the structure of the economy, with a heightened emphasis on adding value through the provision of service and knowledge;
Shifts in consumer tastes and preferences, including a greater acceptance of owner-occupied multi-family housing and a strong desire for "authenticity" and "experience;"
Technology, especially as it enables decentralized work and informs consumer tastes;
Transportation, including congestion and rising energy costs, and
Cultural/entertainment, an element of society that is increasingly multi-faceted and diverse.

Phase 1 Feasibility Memo

Underlying all of the above (which have an impact through all of society) is the desire for what has been termed *Walkable Urbanism*. According to the Brookings Institute, "since the rise of cities 8,000 years ago, humans have only wanted to walk about 1,500 feet (approximately a quarter mile) until they begin looking for an alternative means of transport: a horse, a trolley, a bicycle, a car. This distance translates into about 160 acres – about the size of a super mall, including its parking lot. It is also about the size, plus or minus 25 percent, of Lower Manhattan, downtown Albuquerque, the financial district of San Francisco, downtown Atlanta, and most other major downtowns in the country."

What makes *Walkable Urbanism* function is not merely distance, but the experience – a pedestrian trip where one encounters a mix of sights and sounds in the context of a range of land uses and a diverse built environment. The translation is that "critical mass" occurs when visitors can find enough to do for an afternoon or an evening, residents' daily needs are largely met within easy access, and the underlying economics justify ongoing investment. When this happens (and is sustained), a dynamic system is in place that will create enhanced economic and fiscal value.

Findings

Many of the trends outlined above can be realized in the Study Area. For example, the proposed footprint comfortably fits the size criteria for walkability, and already contains some diversity of land uses and local businesses. Perhaps just as importantly, strong action by the public sector in terms of both the regulatory environment and infrastructure planning can spur private sector interest in the area. This is a crucial element of successful revitalization, as evidence in the region and elsewhere indicates that sustainable redevelopment typically requires both public participation, in the form of both infrastructure and policies/programs, and private commitments. This public/private partnership creates a sum that is greater than the parts, in the process offering the community the maximum return on its collective investment.

Assuming the capture rates presented within the full text of the report (Appendix E), roughly residential dwelling units and a combined 900,000 square 1,000 office/retail/restaurant/entertainment could be absorbed within the planning area over the next twenty years. Details about average densities and floor-to-area ratios would be finalized in latter phases of the TOD analysis including the codification of such densities within a designated zoning structure; however, the currently undeveloped areas within the City Limits south of US-290 provide ample room for the first phase of projects to occur in congruence with the implementation of the rail transit within the corridor.

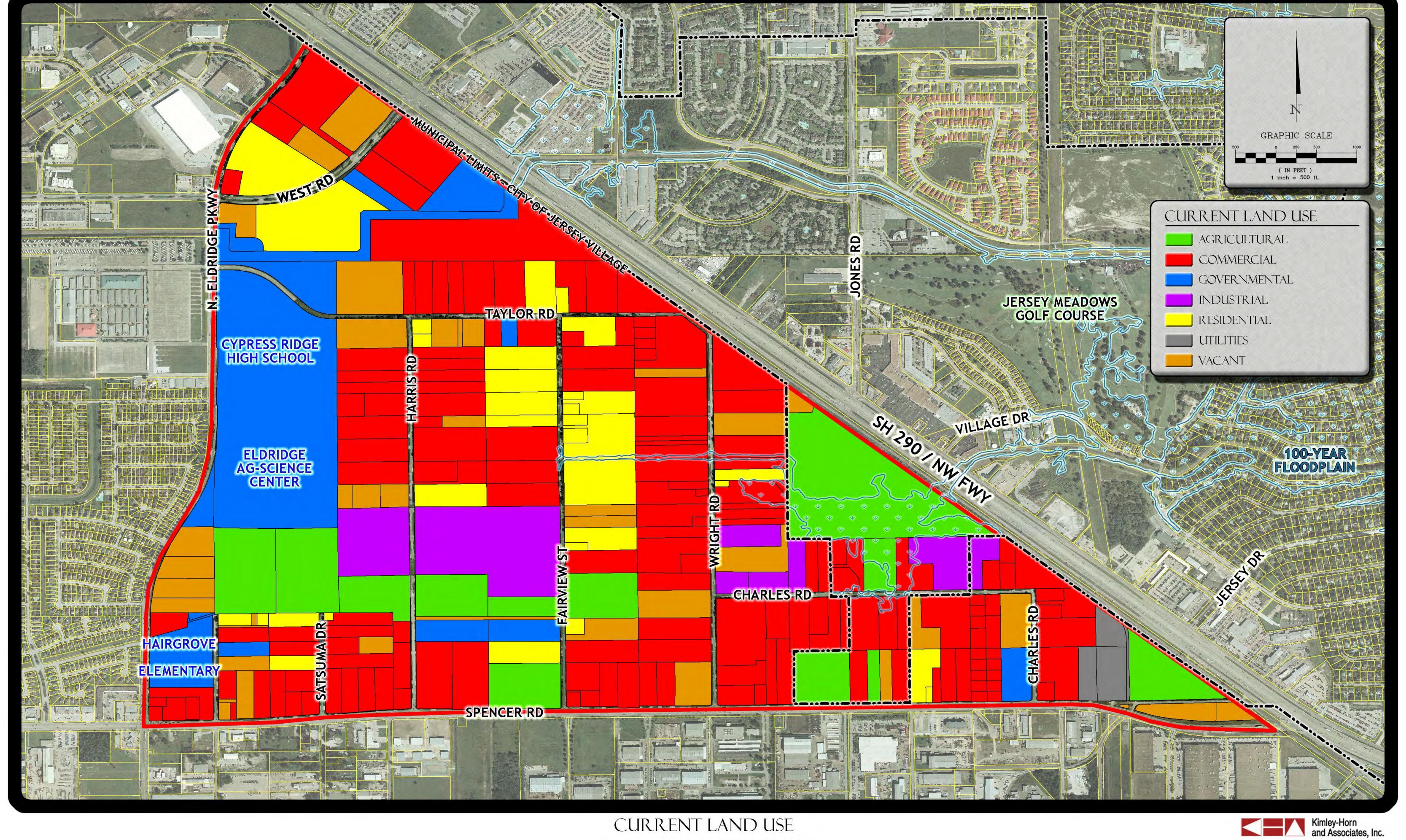
Recommendations

With its emphasis on mixed-use, urbanist (including residential) land use and development, the market concept behind the revitalization of the Study Area reflects current market orientation and conditions, and is consistent with similar projects elsewhere across the nation. Meanwhile, the overall outlook for the local economy and aggregate local demand for real estate indicate sufficient demand to create enhanced incremental tax base values and attendant revenues to the community. As a result, TXP believes a mixed-use/Transit Oriented Development approach represents the most appropriate development regime for the Study Area.

Phase 1 Feasibility Memo

CONCLUSION

NTP #1 sought to answer whether there is an absence of barriers to general success and initial justification to engage stakeholders to continue the study and to craft an implementation framework to realize this area as a key opportunity for quality growth and economic development. A fundamental supporting question that will be answered if the initiative continues will be whether the site provides a TOD opportunity given the overall regional rail transit strategy for the 290 Corridor in the context of current and future market conditions?

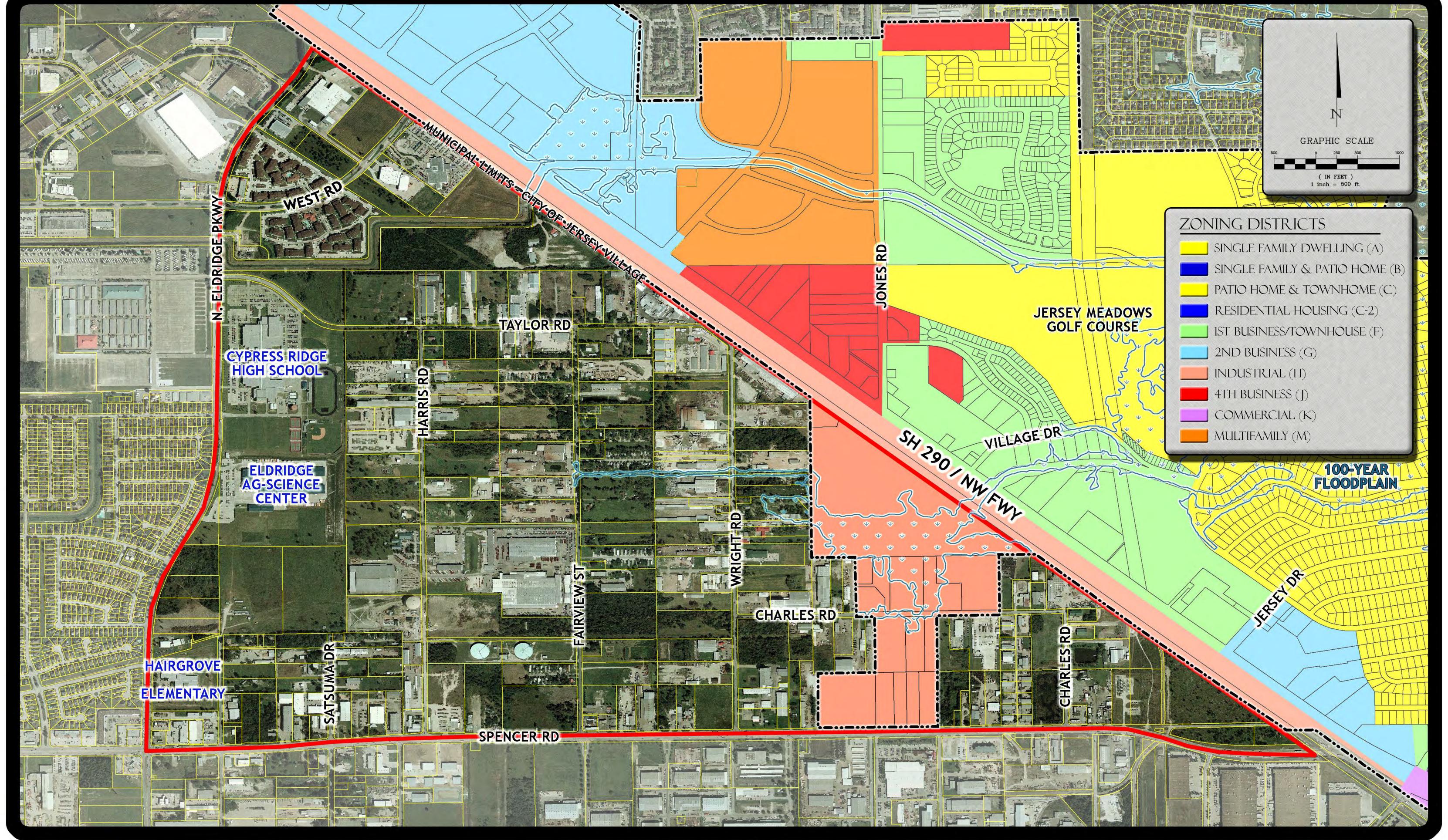

In this context, the consultant team believes that no barriers to general success exist either in terms of current land uses, general environmental conditions, initial utility considerations and general market conditions locally and regionally. In addition, the team's understanding of likely stakeholders who will be interested in the initiative and would likely seek to take advantage of the opportunity could be expected to want to explore market opportunities posed by the potential implementation of the TOD in the context of the investment in Jones Road.

NTP #2 proposed the involvement of a stakeholder committee and interviews of key stakeholders to determine the overall viability of implementing a TOD within the Study Area. Overall support from the stakeholders, both regional agency and individual land owners, suggests that further analysis and planning is warranted before final determinations are made pertaining to the ultimate build-out of this area.

NTPs #3 and #4 analyzed known environmental constraints and market forecasts that would ultimately determine the environmental and development feasibility of the proposed concepts within the study area. The findings to date have all supported the further development and analysis of plans for a TOD style development occurring near the Jones road extension at US-290. Known environmental constraints will guide the determination of location for certain types of development, but the overall absorption of 1,000 residential dwelling units and roughly 900,000 square feet of office/commercial/retail/entertainment space can likely occur over a twenty year planning horizon.

Accordingly, based on the findings herein that have been presented to the City Council from the undertaking of initial this initial phase of feasibility analysis, the Project Team concludes that initial conditions would support an opportunity to accommodate a TOD with adjacent land use benefits, and it therefore recommends that the next phase of planning and fiscal analysis should be undertaken with the participation of stakeholders in a facilitated process.

APPENDIX A – C	CURRENT	LAND	USE	MAP
----------------	---------	------	-----	-----



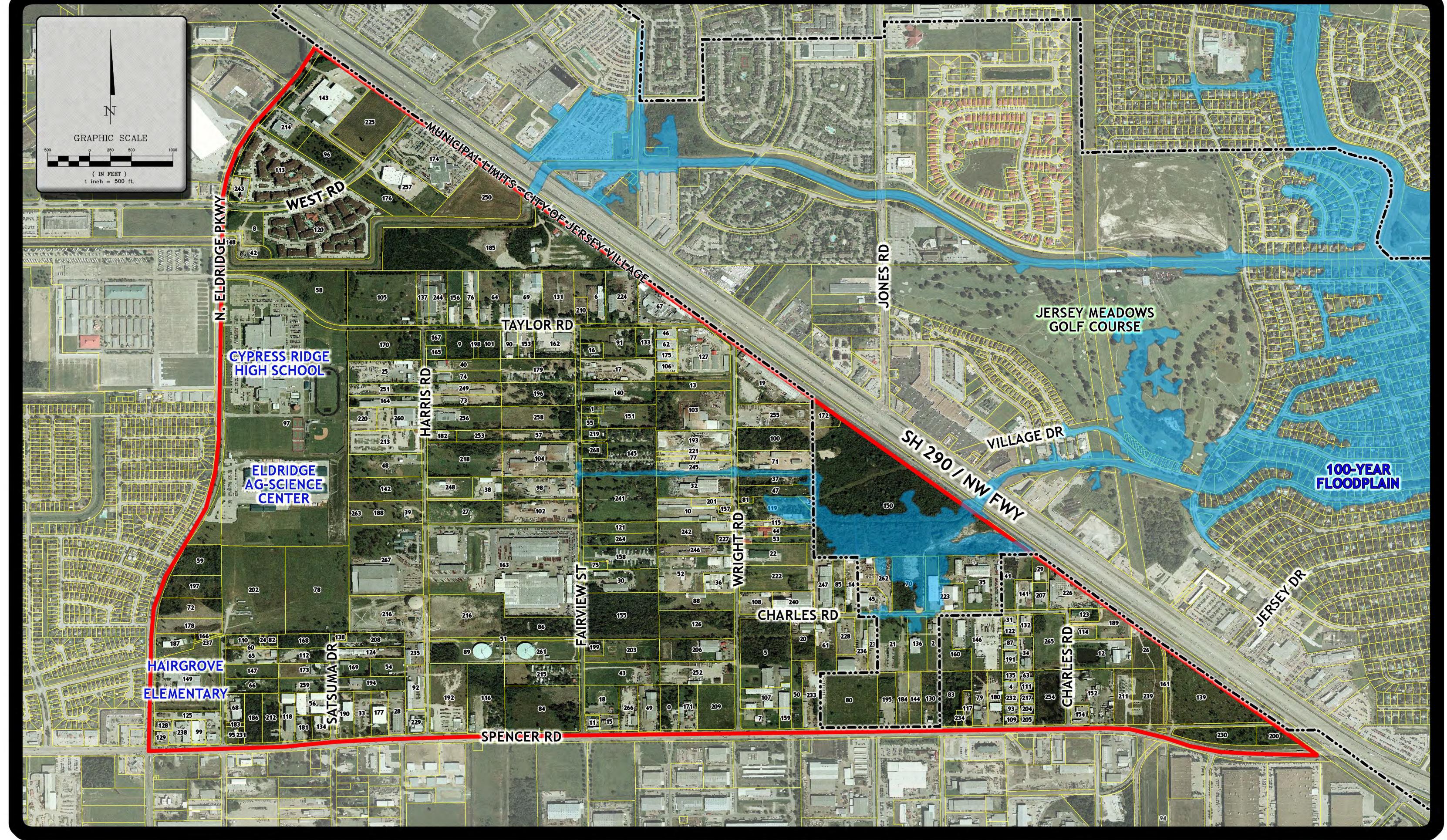
CURRENT LAND USE

JERSEY VILLAGE

CITY OF JERSEY VILLAGE, TEXAS

APPENDIX B - CURRENT ZONING MAP

EXISTING ZONING


JERSEY VILLAGE

CITY OF JERSEY VILLAGE, TEXAS

APRIL 8, 2009

APPENDIX C - NATURAL FEATURES AND **CONSTRAINTS MAP**

EXISTING PARCELS & CONSTRAINTS

JERSEY VILLAGE

CITY OF JERSEY VILLAGE, TEXAS

APRIL 8, 2009

Phase 1 Feasibility Memo

APPENDIX D - PHASE 1 (ASTM) ENVIRONMENTAL RECORDS REVIEW EXECUTIVE SUMMARY, OIL AND GAS WELL REPORT, AND WATER WELL REPORT

Jersey Village 16501 Jersey Dr. Jersey Village, TX 77041

Inquiry Number: 2552497.2s

July 29, 2009

The EDR Radius Map™ Report with GeoCheck®

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map	2
Detail Map.	3
Map Findings Summary.	4
Map Findings.	7
Orphan Summary.	
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum.	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map.	
Physical Setting Source Map.	
Physical Setting Source Map Findings.	A-15
Physical Setting Source Records Searched	A-506

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2009 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

16501 JERSEY DR. JERSEY VILLAGE, TX 77041

COORDINATES

Latitude (North): 29.887000 - 29° 53' 13.2" Longitude (West): 95.592800 - 95° 35' 34.1"

Universal Tranverse Mercator: Zone 15 UTM X (Meters): 249599.2 UTM Y (Meters): 3308909.0

Elevation: 119 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 29095-H5 SATSUMA, TX

Most Recent Revision: 1995

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 2005, 2006 Source: USDA

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following records. For more information on this property see page 7 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
WHITE OAK BAYOU JOINT POWERS BOAR 16501 JERSEY DRIVE JERSEY VILLAGE, TX 77040	FINDS	N/A
WHITE OAK BAYOU JOINT POWERS BOAR 16501 JERSEY DRIVE JERSEY VILLAGE, TX 77040	ICIS	N/A

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list	
NPL	
Proposed NPL	Proposed National Priority List Sites Federal Superfund Liens
	Todardi Caponana Liono
Federal Delisted NPL site lis	t
Delisted NPL	National Priority List Deletions
Federal RCRA CORRACTS for	acilities list
CORRACTS	Corrective Action Report
5 / /BODA - OODDAG	TO TOD (. 1941 . 19 4
Federal RCRA non-CORRAC	
RCRA-TSDF	RCRA - Transporters, Storage and Disposal
Federal institutional controls	s / engineering controls registries
US ENG CONTROLS	Engineering Controls Sites List
	Sites with Institutional Controls
State- and tribal - equivalent	NPL
SHWS	State Superfund Registry
State and tribal landfill and/o	or solid waste disposal site lists
CLI	•
	Commercial Hazardous & Solid Waste Management Facilities
State and tribal leaking store	age tank lists
INDIAN LUST	Leaking Underground Storage Tanks on Indian Land
State and tribal registered st	torage tank lists
_	-
INDIAN 051	Underground Storage Tanks on Indian Land
State and tribal voluntary cle	eanup sites
INDIAN VCP	Voluntary Classus Drievity Listing
	Voluntary Cleanup Priority Listing
State and tribal Brownfields	

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

..... Open Dump Inventory

DEBRIS REGION 9..... Torres Martinez Reservation Illegal Dump Site Locations

Local Lists of Hazardous waste / Contaminated Sites

US CDL..... Clandestine Drug Labs

DEL SHWS...... Deleted Superfund Registry Sites
PRIORITYCLEANERS...... Dry Cleaner Remediation Program Prioritization List

Local Land Records

LIENS 2..... CERCLA Lien Information

LUCIS.....Land Use Control Information System

LIENS..... Environmental Liens Listing HIST LIENS..... Environmental Liens Listing

Other Ascertainable Records

DOT OPS..... Incident and Accident Data DOD...... Department of Defense Sites FUDS..... Formerly Used Defense Sites

CONSENT..... Superfund (CERCLA) Consent Decrees

ROD...... Records Of Decision UMTRA..... Uranium Mill Tailings Sites MINES..... Mines Master Index File TSCA...... Toxic Substances Control Act PADS...... PCB Activity Database System MLTS..... Material Licensing Tracking System RADINFO...... Radiation Information Database

RAATS......RCRA Administrative Action Tracking System

ED AQUIF..... Edwards Aquifer Permits

USD...... Municipal Settings Designations Database

RWS...... Radioactive Waste Sites

INDIAN RESERV..... Indian Reservations

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

EDR PROPRIETARY RECORDS

EDR Proprietary Records

Manufactured Gas Plants..... EDR Proprietary Manufactured Gas Plants EDR Historical Auto Stations.. EDR Proprietary Historic Gas Stations EDR Historical Cleaners EDR Proprietary Historic Dry Cleaners

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in bold italics are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Federal CERCLIS list

CERCLIS: The Comprehensive Environmental Response, Compensation and Liability Information System contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

A review of the CERCLIS list, as provided by EDR, and dated 01/09/2009 has revealed that there is 1 CERCLIS site within approximately 2 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
JONES ROAD GROUND WATER PLUME		NNE 1 - 2 (1.266 mi.)	373	1769

Federal CERCLIS NFRAP site List

CERC-NFRAP: Archived sites are sites that have been removed and archived from the inventory of CERCLIS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list this site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. This decision does not necessarily mean that there is no hazard associated with a given site; it only means that, based upon available information, the location is not judged to be a potential NPL site.

A review of the CERC-NFRAP list, as provided by EDR, and dated 12/03/2007 has revealed that there are 3 CERC-NFRAP sites within approximately 2 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WASTE MANAGEMENT OF HOUSTON ADDICKS-FAIRBANKS ROAD SAND IN	12518 FM ROAD 529 SPENC 6415 ADDICKS-FAIRBANKS	'	169 382	957 1806
Lower Elevation	Address	Direction / Distance	Map ID	Page
GROWTH SYSTEMS	11811 CHARLES STREET	ESE 1/4 - 1/2 (0.334 mi.)	K61	282

Federal RCRA generators list

RCRA-LQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

A review of the RCRA-LQG list, as provided by EDR, and dated 11/12/2008 has revealed that there are 3 RCRA-LQG sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
QUEST CHEMICAL CORP	12255 FM 529 IND PK BLD	S 1/4 - 1/2 (0.451 mi.)	R141	768
Lower Elevation	Address	Direction / Distance	Map ID	Page
				
BASF CONSTRUCTION CHEMICALS LL	7100 WRIGHT RD	SSE 1/4 - 1/2 (0.465 mi.)	U161	899

RCRA-SQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

A review of the RCRA-SQG list, as provided by EDR, and dated 11/12/2008 has revealed that there are 21 RCRA-SQG sites within approximately 2 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
SERMATECH POWER SOLUTIONS	7615 FAIRVIEW STREET	NW 1/8 - 1/4 (0.148 mi.)	D13	46
OCEANEERING INTERNATIONAL	11927 FM 529	S 1/2 - 1 (0.597 mi.)	AD231	1297
EMMETT PROPERTIES INC	13100 WEIMAN RD	SW 1 - 2 (1.156 mi.)	371	1760
LELAND STEEPLECHASE BODY SHOP	12700 CASTLEBRIDGE	NNW 1 - 2 (1.249 mi.)	372	1768
DRY CLEAN SUPER CENTER	9125 JONES ROAD	NNE 1 - 2 (1.331 mi.)	BB376	1778
MAC EQUIPMENT INC	13813 FM 529	WSW 1 - 2 (1.593 mi.)	381	1794
BIG THREE INDUSTRIES INC	12800 W LITTLE YORK	SSW 1 - 2 (1.688 mi.)	386	1808
NOV RIG SOLUTIONS WEST LITTLE	12950 W. LITTLE YORK	SSW 1 - 2 (1.746 mi.)	BC387	1810
NOV RIG SOLUTIONS WEST LITTLE	12950 W LITTLE YORK	SSW 1 - 2 (1.746 mi.)	BC388	1885
ONE TWENTYFIVE CLEAN SUPER CEN	6327 N ELDRIDGE	SSW 1 - 2 (1.790 mi.)	BD394	1903
Lower Elevation	Address	Direction / Distance	Map ID	Page
GRAYLOC PRODUCTS	11835 CHARLES RD	ESE 1/4 - 1/2 (0.308 mi.)	K56	260
FAIRVIEW GARDENS DEVELOPMENT L	11800 CHARLES RD	ESE 1/4 - 1/2 (0.342 mi.)	K64	294
OCEANEERING INTERVENTION ENGIN	11917 FM 529	SSE 1/4 - 1/2 (0.495 mi.)	U183	1072
WEATHERFORD ENTERRA	11909-A SPENCER RD	SSE 1/2 - 1 (0.508 mi.)	V203	1188
HYDRAULICS OF TEXAS	6714 NORTHWINDS DR	SE 1/2 - 1 (0.900 mi.)	AS315	1614
CAMERON INTERNATIONAL CORPORAT	16250 PORT NORTHWEST DI	R ESE 1 - 2 (1.282 mi.)	374	1774
JOE MYERS MITSUBISHI	16484 NORTHWEST FWY	ESE 1 - 2 (1.402 mi.)	377	1788
NATIONAL OILWELL VARCO LP	12000 W LITTLE YORK RD	SSE 1 - 2 (1.435 mi.)	378	1790
GEMINI CIRCUITS INC	11510 S PETROPARK DR	SSE 1 - 2 (1.753 mi.)	389	1888
PII NORTH AMERICA INC	7105 BUSINESS PARK DR	ESE 1 - 2 (1.776 mi.)	392	1891
TOSHIBA INTERNATIONAL CORPORAT	13131 W LITTLE YORK RD	SSW 1 - 2 (1.815 mi.)	395	1905

RCRA-CESQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

A review of the RCRA-CESQG list, as provided by EDR, and dated 11/12/2008 has revealed that there are 11 RCRA-CESQG sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WW INDUSTRIES INC	7826 HARMS RD	WNW 1/4 - 1/2 (0.371 mi.)	73	333
ALFA LAVAL THERMAL INC	12249 FM 529 RD STE A	S 1/4 - 1/2 (0.450 mi.)	R128	607
FAIRBANKS MORSE ENGINE	12253 FM 529 RD	S 1/4 - 1/2 (0.451 mi.)	R131	612
BROWN FINTUBE	12602 FM 529	SW 1/2 - 1 (0.576 mi.)	AC223	1275
COATING APPLICATORS CORPORATIO	7134 SATSUMA RD	WSW 1/2 - 1 (0.603 mi.)	AE240	1378
Lower Elevation	Address	Direction / Distance	Map ID	Page
NATIONAL OIL WELL	11919 FM 529 RD	SSE 1/4 - 1/2 (0.492 mi.)	U178	993
OCEANEERING INTERNATIONAL	11911 FM 529	SSE 1/2 - 1 (0.505 mi.)	V195	1125
WEATHERFORD INTERNATIONAL INC	11909 SPENCER RD	SSE 1/2 - 1 (0.508 mi.)	V199	1131
PALL CORP SOUTHWEST DIV	17489 VILLAGE GREEN DR	ENE 1/2 - 1 (0.661 mi.)	AG259	1461
WATER QUALITY SVC	17459 VILLAGE GREEN	ENE 1/2 - 1 (0.696 mi.)	AG271	1488
PINNACLE PRODUCTS INC	11330 CHARLES	ESE 1/2 - 1 (0.779 mi.)	AN287	1553

Federal ERNS list

ERNS: The Emergency Response Notification System records and stores information on reported releases of oil and hazardous substances. The source of this database is the U.S. EPA.

A review of the ERNS list, as provided by EDR, and dated 12/31/2008 has revealed that there are 5 ERNS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
17738 HEMPSTEAD HIGHWAY	17738 HEMPSTEAD HIGH	WAYNE 1/4 - 1/2 (0.468 mi.)	167	957
7127 SATSUMA ST.	7127 SATSUMA ST.	WSW 1/2 - 1 (0.603 mi.)	AE241	1384
7043-C SATSUMA ST.	7043-C SATSUMA ST.	SW 1/2 - 1 (0.673 mi.)	AH262	1471
Lower Elevation	Address	Direction / Distance	Map ID	Page
11502 CHARLES	11502 CHARLES	ESE 1/2 - 1 (0.647 mi.)	AF250	1435
11500 CHARLES ST.	11500 CHARLES ST.	ESE 1/2 - 1 (0.649 mi.)	AF252	1440

State and tribal landfill and/or solid waste disposal site lists

SWF/LF: The Solid Waste Facilities/Landfill Sites records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. The data come from the Texas Commission on Environmental Quality's permitted Solid Waste Facilities list.

A review of the SWF/LF list, as provided by EDR, and dated 05/12/2009 has revealed that there is 1

SWF/LF site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WRIGHT ROAD MULCH LLC	7800 1/2 WRIGHT RD	NE 1/4 - 1/2 (0.271 mi.)	147	233

State and tribal leaking storage tank lists

LPST: The Leaking Petroleum Storage Tank Incident Reports contain an inventory of reported leaking petroleum storage tank incidents. The data come from the Texas Commission on Environmental Quality's Leaking Petroleum Storage Tank Database.

A review of the LPST list, as provided by EDR, and dated 04/01/2009 has revealed that there are 11 LPST sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
MIDWEST METALLIC Status Code: FINAL CONCURRENCE IS	7301 FAIRVIEW SUED, CASE CLOSED	SSW 1/8 - 1/4 (0.165 mi.)	E18	54
FORMER SHELL Status Code: FINAL CONCURRENCE IS	17504 HWY 290 SUED, CASE CLOSED	ENE 1/2 - 1 (0.519 mi.)	W209	1240
BROWN FINTUBE Status Code: FINAL CONCURRENCE IS	12518 FM 529 SUED, CASE CLOSED	SSW 1/2 - 1 (0.534 mi.)	Y213	1254
THOMAS CHARLIE OLDS Status Code: FINAL CONCURRENCE IS	12500 CASTLEBRIDGE SUED, CASE CLOSED	N 1/2 - 1 (0.921 mi.)	AV325	1628
Lower Elevation	Address	Direction / Distance	Map ID	Page
MISSION COATING DIV CEILCOTE Status Code: FINAL CONCURRENCE IS	7100 WRIGHT RD SUED, CASE CLOSED	SSE 1/4 - 1/2 (0.465 mi.)	U165	943
TRITON TOOL Status Code: FINAL CONCURRENCE IS	11917 FM 529 SUED, CASE CLOSED	SSE 1/4 - 1/2 (0.495 mi.)	U185	1095
CHARLES RD SOC Status Code: FINAL CONCURRENCE IS	11515 CHARLES RD SUED, CASE CLOSED	ESE 1/2 - 1 (0.636 mi.)	AF247	1399
NATIONAL STEEL PRODUCTS Status Code: FINAL CONCURRENCE IS	11919 SPENCER RD SUED, CASE CLOSED	SSE 1/2 - 1 (0.646 mi.)	248	1402
STOP NO GO 2623 Status Code: FINAL CONCURRENCE IS		E 1/2 - 1 (0.674 mi.)	AI269	1483
US RENTALS Status Code: FINAL CONCURRENCE IS	17138 HIGHWAY 290 SUED, CASE CLOSED	E 1/2 - 1 (0.965 mi.)	354	1696
GIFFORD HILL AND CO Status Code: FINAL CONCURRENCE IS	11201 FM 529 SUED, CASE CLOSED	ESE 1/2 - 1 (0.981 mi.)	AY362	1712

State and tribal registered storage tank lists

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Texas Commission on Environmental Quality's Petroleum Storage Tank Database.

A review of the UST list, as provided by EDR, and dated 05/01/2009 has revealed that there are 31 UST

sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
BLASCHKE TRUCKING	7531 FAIRVIEW	W 0 - 1/8 (0.056 mi.)	В3	8
MID-WEST AM DIV AM BUILDINGS	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.165 mi.)	E22	96
JERSEY VILLAGE PLANT	7207 FAIRVIEW	SSW 1/4 - 1/2 (0.272 mi.)	J51	247
WRIGHT RD CONCRETE PLANT	7824 WRIGHT	NE 1/4 - 1/2 (0.289 mi.)	154	253
FABMARK INC	7938 WRIGHT RD	NNE 1/4 - 1/2 (0.389 mi.)	75	339
CIRCLE S CHEVRON	12222 FM 529	S 1/4 - 1/2 (0.447 mi.)	R98	473
CITY OF JERSEY VILLAGE MAINT G	12424 TAYLOR RD	NNW 1/4 - 1/2 (0.459 mi.)	S150	868
SHELL RETAIL FACILITY	17504 NORTHWEST FWY	ENE 1/2 - 1 (0.518 mi.)	W207	1232
BAS-TEX	12518 FM 529	SSW 1/2 - 1 (0.534 mi.)	Y212	1246
BROWN FINTUBE	12602 FM 529 RD	SW 1/2 - 1 (0.576 mi.)	AC224	1284
SELCO	12999 FM 529	WSW 1/2 - 1 (0.895 mi.)	AT312	1610
E G ALFORD COMPANY	13011 FM 529 RD	WSW 1/2 - 1 (0.907 mi.)	AT317	1616
LOT 18	12500 CASTLEBRIDGE	N 1/2 - 1 (0.921 mi.)	AV326	1629
529 MARKET	13051 FM 529 RD	WSW 1/2 - 1 (0.940 mi.)	AT331	1639
FUEL DEPOT 10	13050 FM 529 RD	WSW 1/2 - 1 (0.957 mi.)	AZ342	1664
Lower Elevation	Address	Direction / Distance	Map ID	Page
JERSEY VILLAGE PLANT 1	7641 WRIGHT RD	ENE 1/8 - 1/4 (0.180 mi.)	F25	139
PIONEER CONCRETE	7641 WRIGHT RD	ENE 1/8 - 1/4 (0.180 mi.)	F27	144
GROUNDS MGMT SERVICE INC	11811 CHARLES ST	ESE 1/4 - 1/2 (0.334 mi.)	K60	279
ANDERSON TRUCKING SERVICE	7119 WRIGHT RD	SSE 1/4 - 1/2 (0.386 mi.)	M74	335
HUBCO INC	11714 CHARLES	ESE 1/4 - 1/2 (0.450 mi.)	P123	575
MISSION COATING DIV CEILCOTE	7100 WRIGHT RD	SSE 1/4 - 1/2 (0.465 mi.)	U165	943
DRAVO BASIC MATERIALS MELENDY	11913 FM 529	SSE 1/2 - 1 (0.502 mi.)	U193	1110
OERLIKON WELDING INDUSTRIES	11903 FM 529 RD	SSE 1/2 - 1 (0.519 mi.)	V208	1237
EXXON RS 69395	17438 NORTHWEST FWY	ENE 1/2 - 1 (0.602 mi.)	AA235	1351
CHARLES RD SOC	11515 CHARLES RD	ESE 1/2 - 1 (0.636 mi.)	AF247	1399
NATIONAL STEEL PRODUCTS	11919 SPENCER RD	SSE 1/2 - 1 (0.646 mi.)	248	1402
SUPER K FOOD STORE	17342 NORTHWEST FWY	E 1/2 - 1 (0.674 mi.)	AI268	1475
CHARLES CONOCO				
	11250 FM 529 RD	ESE 1/2 - 1 (0.956 mi.)	AY338	1656
US RENTALS	17138 HIGHWAY 290	E 1/2 - 1 (0.965 mi.)	354	1696
		,		

AST: The Aboveground Storage Tank database contains registered ASTs. The data come from the Texas Commission on Environmental Quality's Petroleum Storage Tank Database.

A review of the AST list, as provided by EDR, and dated 05/01/2009 has revealed that there are 18 AST sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
JERSEY VILLAGE PLANT	7207 FAIRVIEW	SSW 1/4 - 1/2 (0.272 mi.)	J52	249
DM TRUCK REPAIR RENTE CO	12243-C FM 529	S 1/4 - 1/2 (0.449 mi.)	R117	553
COLTEC INDUSTRIES	12253 FM 529 RD	S 1/4 - 1/2 (0.451 mi.)	R133	618
ELDRIDGE TRANSPORTATION CENTER	7600 N ELDRIDGE PKWY	W 1/2 - 1 (0.769 mi.)	AL280	1535
ADAMS LAWN & PLANT	6902 SATSUMA	SW 1/2 - 1 (0.795 mi.)	291	1568
SOUTH BAY GUNITE	7130 MAYARD RD	WSW 1/2 - 1 (0.799 mi.)	AO292	1570
LOT 18	12500 CASTLEBRIDGE	N 1/2 - 1 (0.921 mi.)	AV327	1634
HONDA OF HOUSTON	12655 WEST RD	NNW 1/2 - 1 (0.922 mi.)	328	1636
Lower Elevation	Address	Direction / Distance	Map ID	Page
JERSEY VILLAGE PLANT 1	7641 WRIGHT RD	ENE 1/8 - 1/4 (0.180 mi.)	F25	139

Lower Elevation	Address	Direction / Distance	Map ID	Page
SUTTON COATING SERVICES INC	7700 WRIGHT RD	ENE 1/8 - 1/4 (0.201 mi.)	F39	216
LONGHORN STEEL	11919 FM 529	SSE 1/4 - 1/2 (0.492 mi.)	U176	986
TRITON TOOL & SUPPLY INC	11917 SPENCER RD	SSE 1/4 - 1/2 (0.495 mi.)	U180	1023
CENTURY ASPAHLT MATERIALS	11913 FM 529	SSE 1/2 - 1 (0.502 mi.)	U190	1103
REDLAND STONE PRODUCTS	11913 FM 529 RD	SSE 1/2 - 1 (0.502 mi.)	U194	1112
TRITON TOOL & SUPPLY	11917 SPENCER RD	SE 1/2 - 1 (0.582 mi.)	AB228	1290
DORSETT BROTHERS CONCRETE SUPP	11206 FM 529	ESE 1/2 - 1 (0.978 mi.)	AY356	1702
HCP PRESS PIPE HOUSTON	11201 FM 529 RD	ESE 1/2 - 1 (0.981 mi.)	AY360	1706
HANSON PIPE AND PRODUCTS	11201 FM 529	ESE 1/2 - 1 (0.981 mi.)	AY361	1709

State and tribal institutional control / engineering control registries

AUL: Sites that have institutional controls.

A review of the AUL list, as provided by EDR, and dated 04/29/2009 has revealed that there is 1 AUL site within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NCI BUILDING SYSTEMS LP	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.165 mi.)	E21	71

State and tribal voluntary cleanup sites

VCP: Voluntary Cleanup Program Sites.

A review of the VCP list, as provided by EDR, and dated 04/21/2009 has revealed that there are 3 VCP sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NCI BUILDING SYSTEMS LP QUEST CHEMICAL CORPORATION	7301 FAIRVIEW 12255 FM 529	SSW 1/8 - 1/4 (0.165 mi.) S 1/4 - 1/2 (0.451 mi.)	E21 R146	71 802
Lower Elevation	Address	Direction / Distance	Map ID	Page
GRAYLOC PRODUCTS	11835 CHARLES STREET	ESE 1/4 - 1/2 (0.308 mi.)	K58	263

ADDITIONAL ENVIRONMENTAL RECORDS

Records of Emergency Release Reports

HMIRS: The Hazardous Materials Incident Report System contains hazardous material spill incidents reported to the Department of Transportation. The source of this database is the U.S. EPA.

A review of the HMIRS list, as provided by EDR, and dated 03/31/2009 has revealed that there are 5 HMIRS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
Not reported	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R136	629
Not reported	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R137	629
Not reported	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R140	768
Lower Elevation	Address	Direction / Distance	Map ID	Page
Not reported	7100 WRIGHT ROAD	SSE 1/4 - 1/2 (0.465 mi.)	U160	899
Not reported	7100 WRIGHT ROAD	SSE 1/4 - 1/2 (0.465 mi.)	U164	943

SPILLS: The Spills Database comes from the Texas Commission on Environmental Quality.

A review of the SPILLS list, as provided by EDR, and dated 06/25/2009 has revealed that there are 12 SPILLS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NCI BUILDING SYSTEMS Incident Status: Closed	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.165 mi.)	E19	54
12226 TAYLOR STREET, HOUSTON HORIZON DIRECTIONAL SYSTEMS SOUTHDOWN THERMAL DYNAMICS QUEST CHEMICAL CORPORATION AT BONANZA MARBLE AT 7043 SASU FM 529 AND MAYARD ST., HOUSTON	12226 TAYLOR STREET, HO 12233 FM 529 12235 FM 529 12255 FM 529 AT BONANZA MARBLE AT 70 FM 529 / MAYARD ST., HO	N 1/4 - 1/2 (0.412 mi.) S 1/4 - 1/2 (0.448 mi.) S 1/4 - 1/2 (0.448 mi.) S 1/4 - 1/2 (0.451 mi.) SW 1/2 - 1 (0.674 mi.) WSW 1/2 - 1 (0.895 mi.)	N82 R110 R111 R146 AH266 AT311	418 517 523 802 1474 1609
Lower Elevation	Address	Direction / Distance	Map ID	Page
SUTTON COATING SERVICES INC DITCH ON N SIDE OF BAYPORT RD. 11714 CHARLES ST. HOUSTON TX. WEATHERFORD ENTERRA SPENCER RC RAYFORD SAWDUST RD. (ADJACENT	7700 WRIGHT RD DITCH ON N SIDE OF BAYP 11714 CHARLES ST. HOUST 11909 SPENCER ROAD RAYFORD SAWDUST RD. (AE	ENE 1/8 - 1/4 (0.201 mi.) ESE 1/4 - 1/2 (0.450 mi.) ESE 1/4 - 1/2 (0.450 mi.) SSE 1/2 - 1 (0.508 mi.) D ESE 1/2 - 1 (0.996 mi.)	F39 P124 P125 V202 AY370	216 577 578 1136 1759

Other Ascertainable Records

RCRA-NonGen: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

A review of the RCRA-NonGen list, as provided by EDR, and dated 11/12/2008 has revealed that there are 35 RCRA-NonGen sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NCI BUILDING SYSTEMS LP	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.152 mi.)	E14	49
GRANT PRIDECO HARMS ROAD FACIL	7755 HARMS RD	W 1/4 - 1/2 (0.361 mi.)	L72	331
TOROMONT PROCESS SYSTEMS	12227-D FM 529	S 1/4 - 1/2 (0.447 mi.)	R102	493
HORIZON DIRECTIONAL SYSTEMS IN	12233 FM 529	S 1/4 - 1/2 (0.448 mi.)	R108	511
BFI THERMAL DYNAMICS	12235 FM 529 RM 101	S 1/4 - 1/2 (0.448 mi.)	R112	530
SOUTHDOWN THERMAL DYNAMICS	12235 FM 529	S 1/4 - 1/2 (0.448 mi.)	R113	536
MOHR RESEARCH ENGINEERING	12237 FM 529	S 1/4 - 1/2 (0.449 mi.)	R114	537

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
CHEYENNE SERVICES	12243-A FM 529	S 1/4 - 1/2 (0.450 mi.)	R118	555
BLACK MAX DOWNHOLE TOOLS	12245-H FM 529	S 1/4 - 1/2 (0.450 mi.)	R119	557
TYCO VALVES & CONTROLS INC	12247-C FM 529	S 1/4 - 1/2 (0.450 mi.)	R121	563
QUEST PACKAGING INC	12255 FM 529 NORTHWOODS	S S 1/4 - 1/2 (0.451 mi.)	R147	826
TEXAS TREE TRANS	12431 TAYLOR RD	NNW 1/4 - 1/2 (0.461 mi.)	S155	879
WASTE MANAGEMENT OF HOUSTON	12518 FM ROAD 529 SPENC	S 1/4 - 1/2 (0.469 mi.)	169	957
BONANZA INDUSTRIES INC (DBA BO	7043-C SATSUMA	SW 1/2 - 1 (0.673 mi.)	AH263	1471
FLUID MECHANICS VALVE COMPANY	12803 FM 529	SW 1/2 - 1 (0.713 mi.)	AJ273	1497
ATLANTIC INDUSTRIAL SERVICES I	11953 FM 529 ROAD	S 1/2 - 1 (0.766 mi.)	AK278	1527
SCS MACHINE & FABRICATING INC	6847 SIGNAT	SSW 1/2 - 1 (0.777 mi.)	AM284	1546
TECHALLOY COMPANY INC	7080 MAYARD ROAD	WSW 1/2 - 1 (0.829 mi.)	298	1580
Lower Elevation	Address	Direction / Distance	Map ID	Page
CHAMPION COATINGS INC	7403 WRIGHT AVE	ESE 1/8 - 1/4 (0.187 mi.)	G38	213
SUTTON COATING SERVICES INC	7700 WRIGHT RD	ENE 1/8 - 1/4 (0.201 mi.)	F39	216
VETCO GRAY	11800 CHARLES ST	ESE 1/4 - 1/2 (0.342 mi.)	K63	293
INDUSTRIAL CHEMICAL AND SCIENT	11722 CHARLES STREET	ESE 1/4 - 1/2 (0.433 mi.)	P90	433
MARINE & MAINLAND	11981-A FM 529	SSE 1/4 - 1/2 (0.463 mi.)	T159	897
LONGHORN STEEL AND FLAMECUTTIN	11921 FM 529	SSE 1/4 - 1/2 (0.489 mi.)	U175	983
TRITON TOOL & SUPPLY INC	11917 SPENCER RD	SSE 1/4 - 1/2 (0.495 mi.)	U180	1023
TESORO GAS MARKETING DIGAS CYP	17311 N FWY	E 1/2 - 1 (0.558 mi.)	Z216	1258
NATIONAL STEEL PRODUCTS CO	11919 SPENCER ROAD	SE 1/2 - 1 (0.580 mi.)	AB227	1288
YORK INTNTL CORPORATION	11935-A FM 529	SE 1/2 - 1 (0.589 mi.)	AB229	1292
EXXON MOBIL CORPORATION	17438 HWY 290 & JONES R	ENE 1/2 - 1 (0.602 mi.)	AA233	1345
GUARDSMAN PRODUCTS INC	11502 CHARLES	ESE 1/2 - 1 (0.647 mi.)	AF249	1425
DRESSER-RAND POWER TURBO PRODU	1 11500 CHARLES RD	ESE 1/2 - 1 (0.649 mi.)	AF255	1448
AMERICAN WHOLESALE THERMOGRAP	H 17477 VILLAGE GREEN DR	ENE 1/2 - 1 (0.661 mi.)	AG257	1454
ATLAS BOLT	6722 NORTHWINDS	SE 1/2 - 1 (0.891 mi.)	AS307	1596
NORTHWEST DRIVE TRAIN SERVICE	11320 FM 529 RD BLDG A	ESE 1/2 - 1 (0.918 mi.)	AU322	1621
CBI NA-CON INC	11234 FM 529	ESE 1/2 - 1 (0.964 mi.)	AY353	1694

TRIS: The Toxic Chemical Release Inventory System identifies facilities that release toxic chemicals to the air, water, and land in reportable quantities under SARA Title III, Section 313. The source of this database is the U.S. EPA.

A review of the TRIS list, as provided by EDR, and dated 12/31/2007 has revealed that there are 7 TRIS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NCI BUILDING SYSTEMS LP	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.165 mi.)	E21	71
QUEST CHEMICAL CORP	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R138	629
KOCH HEAT TRANSFER CO LP	12602 FM 529	SW 1/2 - 1 (0.576 mi.)	AC220	1269
BONANZA INDUSTRIES INC (DBA BO	7043-C SATSUMA	SW 1/2 - 1 (0.673 mi.)	AH263	1471
Lower Elevation	Address	Direction / Distance	Map ID	Page
CHAMPION COATINGS	7403 WRIGHT RD	ESE 1/8 - 1/4 (0.187 mi.)	G34	155
BASF CONSTRUCTION CHEMICALS LL	7100 WRIGHT RD	SSE 1/4 - 1/2 (0.465 mi.)	U163	908
HANSON PIPE & PRODUCTS INC JER	11201 FM 529	ESE 1/2 - 1 (0.981 mi.)	AY363	1712

FTTS: FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act) over the previous five years. To maintain currency, EDR contacts the Agency on a quarterly basis.

A review of the FTTS list, as provided by EDR, and dated 04/09/2009 has revealed that there are 4 FTTS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
QUEST	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R143	782
Lower Elevation	Address	Direction / Distance	Map ID	Page
INDUSTRIAL CHEMICAL & SCIENTIF	11722 CHARLES ST	ESE 1/4 - 1/2 (0.433 mi.)	P87	424
INDUSTRIAL CHEMICAL & SCIENTIF	11722 CHARLES ST	ESE 1/4 - 1/2 (0.433 mi.)	P88	424
IRELAND ALLOYS	11300 FM 529	ESE 1/2 - 1 (0.927 mi.)	AU329	1638

HIST FTTS: A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

A review of the HIST FTTS list, as provided by EDR, and dated 10/19/2006 has revealed that there are 4 HIST FTTS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
QUEST	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R143	782
Lower Elevation	Address	Direction / Distance	Map ID	Page
INDUSTRIAL CHEMICAL & SCIENTIF	11722 CHARLES ST	ESE 1/4 - 1/2 (0.433 mi.)	P87	424
INDUSTRIAL CHEMICAL & SCIENTIF	11722 CHARLES ST	ESE 1/4 - 1/2 (0.433 mi.)	P88	424
IRELAND ALLOYS	11300 FM 529	ESE 1/2 - 1 (0.927 mi.)	AU329	1638

SSTS: Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

A review of the SSTS list, as provided by EDR, and dated 12/31/2006 has revealed that there are 5 SSTS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
QUEST CHEMICAL CORP	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R139	630
QUEST CHEMICAL CORP	12255 FM 529 NORTH WOOD	SSW 1/2 - 1 (0.760 mi.)	275	1503
Lower Elevation	Address	Direction / Distance	Map ID	Page
PREMIER MEDICAL TECHNOLOGY INC	7705 WRIGHT RD	ENE 1/8 - 1/4 (0.204 mi.)	40	226
INDUSTRIAL CHEMICAL & SCIENTIF	11722 CHARLES ST	ESE 1/4 - 1/2 (0.433 mi.)	P86	422
PINNACLE PRODUCTS, INC.	11330 CHARLES RD	ESE 1/2 - 1 (0.779 mi.)	AN286	1553

ICIS: The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

A review of the ICIS list, as provided by EDR, and dated 03/20/2009 has revealed that there are 9 ICIS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
SERMATECH INTERNATIONAL INC	7615 FAIRVIEW ST	WNW 0 - 1/8 (0.064 mi.)	C6	12
QUEST CHEMICAL CORP	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R144	783
KOCH HEAT TRANSFER COMPANY	12602 FM 529	SW 1/2 - 1 (0.576 mi.)	AC225	1287
OCEANEERING INTERNATIONAL	11927 FM 529	S 1/2 - 1 (0.597 mi.)	AD230	1295
MAYDE CREEK MUD WASTEWATER TRE	6919 MAYARD	SW 1/2 - 1 (0.947 mi.)	AW334	1645
Lower Elevation	Address	Direction / Distance	Map ID	Page
PIONEER CONCRETE OF TEXAS INC	7641 WRIGHT RD	ENE 1/8 - 1/4 (0.180 mi.)	F26	143
INDUSTRIAL CHEMICAL & SCIENTIF	11722 CHARLES ST.	ESE 1/4 - 1/2 (0.433 mi.)	P85	419
PINNACLE PRODUCTS	11330 CHARLES ROAD	ESE 1/2 - 1 (0.779 mi.)	AN288	1562
HANSON PIPE & PRODUCTS INC JE	11201 FM 529	ESE 1/2 - 1 (0.981 mi.)	AY364	1712

FINDS: The Facility Index System contains both facility information and "pointers" to other sources of information that contain more detail. These include: RCRIS; Permit Compliance System (PCS); Aerometric Information Retrieval System (AIRS); FATES (FIFRA [Federal Insecticide Fungicide Rodenticide Act] and TSCA Enforcement System, FTTS [FIFRA/TSCA Tracking System]; CERCLIS; DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes); Federal Underground Injection Control (FURS); Federal Reporting Data System (FRDS); Surface Impoundments (SIA); TSCA Chemicals in Commerce Information System (CICS); PADS; RCRA-J (medical waste transporters/disposers); TRIS; and TSCA. The source of this database is the U.S. EPA/NTIS.

A review of the FINDS list, as provided by EDR, and dated 04/28/2009 has revealed that there are 147 FINDS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NORTHWEST CROSSING	7607 FAIRVIEW ST	WNW 0 - 1/8 (0.061 mi.)	B4	11
TASCON INDUSTRIES, INC.	7607 FAIRVIEW RD	WNW 0 - 1/8 (0.061 mi.)	B5	12
7410 FAIRVIEW	7410 FAIRVIEW ST	WSW 0 - 1/8 (0.064 mi.)	7	13
GRAEME REED - SUBURBAN MOBILE	7622 FAIRVIEW ST	WNW 0 - 1/8 (0.068 mi.)	C8	13
SUBURBAN MOBILE HOME PARK 2	7638 FAIRVIEW ST	NW 0 - 1/8 (0.077 mi.)	C9	14
SERMATECH POWER SOLUTIONS SURF	7615 FAIRVIEW ST	NW 1/8 - 1/4 (0.148 mi.)	D11	28
NCI BUILDING SYSTEMS LP	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.152 mi.)	E14	49
NCI BUILDING SYSTEMS	7301 FAIRVIEW STREET	SSW 1/8 - 1/4 (0.152 mi.)	E17	53
TERRO ENTERPRISES FAIRVIEW BUS	7826 FAIRVIEW ST	NNW 1/8 - 1/4 (0.242 mi.)	H41	227
FAIRVIEW GARDENS MHP	7835 FAIRVIEW ST	NNW 1/8 - 1/4 (0.250 mi.)	H42	227
WRIGHT ROAD MULCH	7800 1/2 WRIGHT RD	NE 1/4 - 1/2 (0.270 mi.)	I45	232
TOPS ORGANIC LLC DBA COPPERFIE	7800 1/2 WRIGHT RD	NE 1/4 - 1/2 (0.270 mi.)	I46	233
JERSEY VILLAGE PLANT	7207 FAIRVIEW	SSW 1/4 - 1/2 (0.272 mi.)	J53	253
NORTHWOODS MOBILE HOME PARK	7119 FAIRVIEW ST	S 1/4 - 1/2 (0.349 mi.)	70	322
GRANT PRIDECO HARMS ROAD FACIL	7755 HARMS RD	W 1/4 - 1/2 (0.361 mi.)	L72	331
INDUSTRIAL PIPING SPECIALISTS	7755 HARMS RD	WNW 1/4 - 1/2 (0.408 mi.)	79	412
HONING	12226 TAYLOR RD	N 1/4 - 1/2 (0.411 mi.)	N81	417
GULF RICE MILLING	12010 TAYLOR RD	NNE 1/4 - 1/2 (0.423 mi.)	O84	419
WW INDUSTRIES INC	7826 HARMS RD	NW 1/4 - 1/2 (0.441 mi.)	91	435
TEXAS DEVELOPMENT NORWOODS MAN	12121 FM 529 RD	S 1/4 - 1/2 (0.445 mi.)	Q93	467
JETT WELD	12118 FM 529 RD	S 1/4 - 1/2 (0.445 mi.)	Q94	468
NORTHWOODS INDUSTRIAL PARK WES	12220 FM 529 RD	S 1/4 - 1/2 (0.447 mi.)	R95	468

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
CIRCLE S FOOD STORE	12222 FM 529 RD	S 1/4 - 1/2 (0.447 mi.)	R97	473
PRECISION POWERED PRODUCTS	12227 FM 529 RD	S 1/4 - 1/2 (0.447 mi.)	R101	493
TOROMONT PROCESS SYSTEMS	12227-D FM 529	S 1/4 - 1/2 (0.447 mi.)	R102	493
NORTHWOODS INDUSTRIAL PARK	12231 1/2 FM 529	S 1/4 - 1/2 (0.448 mi.)	R105	503
HORIZON DIRECTIONAL SYSTEMS IN	12233 FM 529	S 1/4 - 1/2 (0.448 mi.)	R108	511
KUBCO DECANTER SVCS	12231 FM 529 RD	S 1/4 - 1/2 (0.448 mi.)	R109	516
BFI THERMAL DYNAMICS	12235 FM 529 RM 101	S 1/4 - 1/2 (0.448 mi.)	R112	530
SOUTHDOWN THERMAL DYNAMICS	12235 FM 529	S 1/4 - 1/2 (0.448 mi.)	R113	536
MOHR RESEARCH ENGINEERING	12237 FM 529	S 1/4 - 1/2 (0.449 mi.)	R114	537
FIBERSPAR HOUSTON SITE	12239 FM 529 RD	S 1/4 - 1/2 (0.449 mi.)	R115	552
CHEYENNE SERVICES	12243 FM 529 RD	S 1/4 - 1/2 (0.449 mi.)	R116	553
CHEYENNE SERVICES	12243-A FM 529	S 1/4 - 1/2 (0.450 mi.)	R118	555
BLACK MAX DOWNHOLE TOOLS	12245-H FM 529	S 1/4 - 1/2 (0.450 mi.)	R119	557
H & B TAYLOR ROAD BUSINESS PAR	12400 TAYLOR RD	NNW 1/4 - 1/2 (0.450 mi.)	S120	563
TYCO VALVES & CONTROLS INC	12247-C FM 529	S 1/4 - 1/2 (0.450 mi.)	R121	563
ALFA LAVAL THERMAL INC	12249 FM 529 RD STE A	S 1/4 - 1/2 (0.450 mi.)	R128	607
RADOIL	12251 FM 529 RD	S 1/4 - 1/2 (0.451 mi.)	R130	612
FAIRBANKS MORSE ENGINE	12253 FM 529 RD	S 1/4 - 1/2 (0.451 mi.)	R131	612
CAMERON IRON WORKS ENVIRONMENT	12253 FM 529 RD	S 1/4 - 1/2 (0.451 mi.)	R132	618
QUEST PACKAGING INC	12255 FM 529 NORTHWOODS	,	R147	826
FLUOROCARBON PRB DIVISION	12257 FM 529 RD	S 1/4 - 1/2 (0.452 mi.)	R148	864
TEXAS TREE TRANS	12431 TAYLOR RD	NNW 1/4 - 1/2 (0.461 mi.)	S155	879
WASTE MANAGEMENT OF HOUSTON	12518 FM ROAD 529 SPENC	S 1/4 - 1/2 (0.469 mi.)	169	957
DOW MACHINE	12530 TAYLOR ROAD	NW 1/2 - 1 (0.507 mi.)	196	1127
		,		
SATSUMA PARK VILLA MOBILE HOME	12718 1/2 TREICHEL RD	WSW 1/2 - 1 (0.543 mi.) SW 1/2 - 1 (0.576 mi.)	214	1254 1269
KOCH HEAT TRANSFER COMPANY	12602 FM 529	'	AC221	
BROWN FINTUBE	12602 FM 529	SW 1/2 - 1 (0.576 mi.)	AC223	1275
HITEMCO SOUTHWEST	7134 SATSUMA DR	WSW 1/2 - 1 (0.603 mi.)	AE239	1377
FOX METALS AND ALLOYS	12660 FM 529 RD	SW 1/2 - 1 (0.612 mi.)	AC243	1390
BONANZA INDUSTRIES INC (DBA BO	7043-C SATSUMA	SW 1/2 - 1 (0.673 mi.)	AH263	1471
BONANZA MARBLE	7043 SATSUMA DR	SW 1/2 - 1 (0.673 mi.)	AH264	1473
MATTYS PATTYS	7042 SATSUMA DR	SW 1/2 - 1 (0.673 mi.)	AH265	1473
FLUID MECHANICS VALVE COMPANY	12803 FM 529	SW 1/2 - 1 (0.713 mi.)	AJ273	1497
ATLANTIC INDUSTRIAL SERVICES H	11953 FM 529 ROAD	S 1/2 - 1 (0.766 mi.)	AK277	1527
CYPRESS-FAIRBANKS ISD	7600 N ELDRIDGE PKWY	W 1/2 - 1 (0.769 mi.)	AL282	1545
SCS MACHINE & FABRICATING INC	6847 SIGNAT	SSW 1/2 - 1 (0.777 mi.)	AM283	1545
SOUTH BAY GUNITE INC	7130 MAYARD RD	WSW 1/2 - 1 (0.799 mi.)	AO293	1572
TECHALLOY COMPANY INC	7080 MAYARD ROAD	WSW 1/2 - 1 (0.829 mi.)	298	1580
CYPRESS RIDGE HIGH SCHOOL	7900 N ELDRIDGE PKWY	WNW 1/2 - 1 (0.850 mi.)	AQ303	1595
GURDWARA NANAKSA TEMPLE	6834 SATSUMA DR	SW 1/2 - 1 (0.862 mi.)	AR306	1596
EMPIRE COATINGS	6802 SATSUMA DR	SW 1/2 - 1 (0.894 mi.)	AR310	1608
HINES POTTERY	6747 SIGNAT DR	SSW 1/2 - 1 (0.895 mi.)	313	1613
TRADERS VILLAGE HOUSTON	7979 N ELDRIDGE PKWY	WNW 1/2 - 1 (0.899 mi.)	314	1614
529 MARKET	13051 FM 529 RD	WSW 1/2 - 1 (0.940 mi.)	AT332	1645
MAYDE CREEK MUD WASTEWATER TRE	6919 MAYARD	SW 1/2 - 1 (0.946 mi.)	AW333	1645
HARRIS COUNTY MUD NO. 130 WWTP	0.5MI S OF USHWY 290 &	NW 1/2 - 1 (0.952 mi.)	AX335	1646
HARRIS COUNTY MUD 130 WASTEWAT	8150 NORTH ELDRIDGE PAR	NW 1/2 - 1 (0.952 mi.)	AX336	1646
MEDWASTE TECHNOLOGIES CORPORAT	6903 MAYARD RD	SW 1/2 - 1 (0.957 mi.)	AW340	1663
STOP N GO 2645	13050 FM 529 RD	WSW 1/2 - 1 (0.957 mi.)	AZ341	1664
BEST PORTABLE TOILETS	6738 SATSUMA DR	SW 1/2 - 1 (0.961 mi.)	BA344	1670
HAIRGROVE EL	7120 N ELDRIDGE PKWY	WSW 1/2 - 1 (0.971 mi.)	355	1701
VINSON CORROSION CONTROL	6720 SATSUMA DR	SSW 1/2 - 1 (0.981 mi.)	BA359	1706
Lower Elevation	Address	Direction / Distance	Map ID	Page
PIONEER CONCRETE OF TEXAS INC	7641 WRIGHT RD	ENE 1/8 - 1/4 (0.180 mi.)	F28	146

Lower Elevation	Address	Direction / Distance	Map ID	Page
JERSEY VILLAGE PLANT 1	7641 WRIGHT ROAD	ENE 1/8 - 1/4 (0.180 mi.)	F29	147
CHAMPION COATINGS	7403 WRIGHT ROAD	ESE 1/8 - 1/4 (0.187 mi.)	G35	201
SUTTON COATING SERVICES INC	7700 WRIGHT RD	ENE 1/8 - 1/4 (0.201 mi.)	F39	216
COILING TECHNOLOGIES	7777 WRIGHT RD	NE 1/4 - 1/2 (0.251 mi.)	I43	227
GRAYLOC PRODUCTS	11835 CHARLES RD	ESE 1/4 - 1/2 (0.308 mi.)	K56	260
FAIRVIEW GARDENS DEVELOPMENT L	11800 CHARLES RD	ESE 1/4 - 1/2 (0.342 mi.)	K64	294
VETCO GRAY	11800 CHARLES ST	ESE 1/4 - 1/2 (0.342 mi.)	K66	321
COOPER ENERGY SERVICES WWTP	11800 CHARLES ST;1.0M W	ESE 1/4 - 1/2 (0.343 mi.)	K67	321
CAMERON INTERNATIONAL CHARLES	11625 CHARLES RD	ESE 1/4 - 1/2 (0.345 mi.)	K68	322
FAIRVIEW GARDENS DEVELOPMENTS	11800 CHARLES RD	ESE 1/4 - 1/2 (0.345 mi.)	K69	322
SKW-MBT OPERATIONS	7100 WRIGHT RD	SSE 1/4 - 1/2 (0.401 mi.)	M77	345
INDUSTRIAL CHEMICAL AND SCIENT	11722 CHARLES STREET	ESE 1/4 - 1/2 (0.433 mi.)	P90	433
HUBCO INC	11714 CHARLES RD	ESE 1/4 - 1/2 (0.450 mi.)	P122	574
PATHFINDER ENERGY SERVICES	11997 FM 529 RD	SSE 1/4 - 1/2 (0.460 mi.)	T151	871
PERRLESS PUMP	11995 FM 529 RD	SSE 1/4 - 1/2 (0.460 mi.)	T153	879
ELMAR NATIONAL OILWELL VARCO	11993 FM 529 RD	SSE 1/4 - 1/2 (0.461 mi.)	T154	879
GENERON SYSTEMS	11985 FM 529 RD	SSE 1/4 - 1/2 (0.462 mi.)	T156	885
MARINE & MAINLAND	11981-A FM 529	SSE 1/4 - 1/2 (0.463 mi.)	T159	897
BASF CONSTRUCTION CHEMICALS LL	7100 WRIGHT RD	SSE 1/4 - 1/2 (0.465 mi.)	U161	899
ARC DESIGNS	11961 FM 529 RD	SSE 1/4 - 1/2 (0.468 mi.)	T166	957
LOGAN INDUSTRIES INTERNATIONAL	11957 FM 529 RD	SSE 1/4 - 1/2 (0.469 mi.)	T168	957
HOUSTON CENTRAL FAB FACILITY	11947 FM 529 RD	SSE 1/4 - 1/2 (0.471 mi.)	T170	959
LONGHORN STEEL AND FLAMECUTTIN	11921 FM 529	SSE 1/4 - 1/2 (0.489 mi.)	U175	983
NATIONAL OIL WELL	11919 FM 529 RD	SSE 1/4 - 1/2 (0.492 mi.)	U178	993
NORTHWOODS INDUSTRIAL PARK EAS	11919 FM 529 RD	SSE 1/4 - 1/2 (0.492 mi.)	U179	1022
TRITON TOOL & SUPPLY INC	11917 SPENCER RD	SSE 1/4 - 1/2 (0.495 mi.)	U180	1023
OCEANEERING INTERNATIONAL	11917 FM 529 RD	SSE 1/4 - 1/2 (0.495 mi.)	U181	1040
OCEANEERING INTERVENTION ENGIN	11917 FM 529	SSE 1/4 - 1/2 (0.495 mi.)	U183	1072
OCEANEERING INTERVENTION ENGIN	11915 FM 529 RD	SSE 1/4 - 1/2 (0.498 mi.)	U186	1095
CENTURY MELENDY ASPHALT PLANT	11913 FM 529	SSE 1/2 - 1 (0.501 mi.)	U187	1096
WEATHERFORD ENTERRA	11909A SPENCER RD	SSE 1/2 - 1 (0.508 mi.)	V197	1127
WEATHERFORD INTERNATIONAL INC	11909 SPENCER RD	SSE 1/2 - 1 (0.508 mi.)	V199	1131
WEATHERFORD US LP	11909 SPENCER RD	SSE 1/2 - 1 (0.508 mi.)	V200	1135
COASTAL FLANGE	11906 FM 529 RD	SSE 1/2 - 1 (0.512 mi.)	V205	1228
ALLOY & STAINLESS FASTENERS	11625 CHARLES STREET	ESE 1/2 - 1 (0.529 mi.)	X211	1245
TESORO GAS MARKETING DIGAS CYP	17311 N FWY	E 1/2 - 1 (0.558 mi.)	Z216	1258
D-CLEANERS	17486 NORTHWEST FWY	ENE 1/2 - 1 (0.559 mi.)	AA218	1261
NATIONAL STEEL PRODUCTS CO	11919 SPENCER ROAD	SE 1/2 - 1 (0.580 mi.)	AB227	1288
YORK INTNTL CORPORATION	11935-A FM 529	SE 1/2 - 1 (0.589 mi.)	AB229	1292
JONES ROAD EXXON 69395	17438 NORTHWEST FWY	ENE 1/2 - 1 (0.598 mi.)	Z232	1345
EXXON MOBIL CORPORATION	17438 HWY 290 & JONES R	ENE 1/2 - 1 (0.602 mi.)	AA233	1345
AT&T CHARLES ROAD	11515 CHARLES RD	ESE 1/2 - 1 (0.636 mi.)	AF246	1399
GUARDSMAN PRODUCTS INC	11502 CHARLES	ESE 1/2 - 1 (0.647 mi.)	AF249	1425
W INDUSTRIES	11500 CHARLES RD	ESE 1/2 - 1 (0.649 mi.)	AF253	1440
DRESSER-RAND POWER TURBO PRODU	11500 CHARLES RD	ESE 1/2 - 1 (0.649 mi.)	AF255	1448
AMERICAN WHOLESALE THERMOGRAPH	117477 VILLAGE GREEN DR	ENE 1/2 - 1 (0.661 mi.)	AG257	1454
PALL CORP SOUTHWEST DIV	17489 VILLAGE GREEN DR	ENE 1/2 - 1 (0.661 mi.)	AG259	1461
SUPER K FOOD STORE	17342 NORTHWEST FWY	E 1/2 - 1 (0.674 mi.)	AI267	1475
WATER QUALITY SVC	17459 VILLAGE GREEN	ENE 1/2 - 1 (0.696 mi.)	AG271	1488
PINNACLE PRODUCTS	11330 CHARLES ROAD	ESE 1/2 - 1 (0.779 mi.)	AN290	1567
ARSHAM METAL INDUSTRIES	11280 CHARLES RD	ESE 1/2 - 1 (0.803 mi.)	AN296	1580
NORTHWINDS BUSINESS PARK	6800 NORTHWINDS DR	SE 1/2 - 1 (0.811 mi.)	297	1580
ATLANTIC INDUSTRIAL SERVICES	11453 FM 529 RD	ESE 1/2 - 1 (0.831 mi.)	AP300	1592
BROOKSIDE EQUIPMENT SALES	11431 FM 529 RD	ESE 1/2 - 1 (0.854 mi.)	AP304	1595
ATLAS BOLT	6722 NORTHWINDS	SE 1/2 - 1 (0.891 mi.)	AS307	1596
HYDRAULICS OF TEXAS	6714 NORTHWINDS DR	SE 1/2 - 1 (0.900 mi.)	AS315	1614
		-		

Lower Elevation	Address	Direction / Distance	Map ID	Page
VERSABAR HOUSTON	11349 FM 529 RD	ESE 1/2 - 1 (0.903 mi.)	AU316	1616
ENERGY CRANE	6707 NORTHWINDS DR	SE 1/2 - 1 (0.909 mi.)	AS318	1620
11333 FM 529 ROAD	11333 FM 529 RD	ESE 1/2 - 1 (0.913 mi.)	AU320	1621
ADMIRAL SERVICES	11333 FM 529	ESE 1/2 - 1 (0.913 mi.)	AU321	1621
NORTHWEST DRIVE TRAIN SERVICE	11320 FM 529 RD BLDG A	ESE 1/2 - 1 (0.918 mi.)	AU322	1621
WEST VILLAGE INDUSTRIAL PARK	11320 FM 529 RD	ESE 1/2 - 1 (0.921 mi.)	AU324	1628
ELG IRELAND ALLOYS	11300 FM 529 RD	ESE 1/2 - 1 (0.932 mi.)	AU330	1639
CHARLES CONOCO	11250 FM 529 RD	ESE 1/2 - 1 (0.956 mi.)	AY339	1663
ARSHAM METAL INDUSTRIES	11242 FM 529 RD	ESE 1/2 - 1 (0.960 mi.)	AY343	1670
NW HOUSTON TERMINAL	11236 FM 529	ESE 1/2 - 1 (0.963 mi.)	AY345	1670
HOUSTON FM 529 FACILITY	11235 FM 529 RD	ESE 1/2 - 1 (0.964 mi.)	AY350	1688
BULK TERMINAL	11235 FM 529 RD	ESE 1/2 - 1 (0.964 mi.)	AY352	1693
CBI NA-CON INC	11234 FM 529	ESE 1/2 - 1 (0.964 mi.)	AY353	1694
DORSETT BROTHERS CONCRETE SUPP	11206 FM 529	ESE 1/2 - 1 (0.978 mi.)	AY357	1704
HANSON PIPE PRODUCTS JERSEY VI	11201 FM 529	ESE 1/2 - 1 (0.981 mi.)	AY366	1718
ADVANCE AUTO PARTS 6478	8650 JONES RD	NNE 1/2 - 1 (0.984 mi.)	368	1755

IOP: Contains information on all sites that are in the IOP. An IOP is an innocent owner or operator whose property is contaminated as a result of a release or migration of contaminants from a source or sources not located on the property, and they did not cause or contribute to the source or sources of contamination.

A review of the IOP list, as provided by EDR, and dated 04/21/2009 has revealed that there are 3 IOP sites within approximately 1 mile of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
BROOKSIDE EQUIPMENT SALES	11431 FM 529	ESE 1/2 - 1 (0.854 mi.)	AP305	1595
GENERAL STORAGE SYSTEMS	11333 FM 529	ESE 1/2 - 1 (0.913 mi.)	AU319	1620
HOUSTON SOLVENTS AND CHEMICALS	11235 FM 529	ESE 1/2 - 1 (0.964 mi.)	AY347	1681

DRYCLEANERS: Drycleaner Registration Database Listing.

A review of the DRYCLEANERS list, as provided by EDR, and dated 04/16/2009 has revealed that there are 11 DRYCLEANERS sites within approximately 2 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
DRY CLEAN SUPER CENTER 8309	9125 JONES RD	NNE 1 - 2 (1.331 mi.)	BB375	1778
TROPIK CLEANERS	11300 WEST RD STE P	N 1 - 2 (1.493 mi.)	379	1793
VILLAGE CLEANERS	9437 JONES RD	NNE 1 - 2 (1.550 mi.)	380	1794
MINKS DRY CLEAN	10980 WEST RD STE A	NNE 1 - 2 (1.630 mi.)	383	1806
PILGRIM CLEANERS 100	9591 JONES RD	NNE 1 - 2 (1.761 mi.)	390	1890
VOGUE CLEANERS	6340 N ELDRIDGE PKWY	SSW 1 - 2 (1.762 mi.)	BD391	1891
1.25 DRY CLEAN SUPER CENTER	6327 N ELDRIDGE PKWY	SSW 1 - 2 (1.790 mi.)	BD393	1898
Lower Elevation	Address	Direction / Distance	Map ID	Page
D-CLEANERS	17486 NORTHWEST FWY	ENE 1/2 - 1 (0.559 mi.)	AA217	1260
FINE CLEANERS	11111 W LITTLE YORK RD	SE 1 - 2 (1.677 mi.)	384	1807
BEST CLEANERS	10850 WEST RD STE 102	NNE 1 - 2 (1.684 mi.)	385	1808
DRY CLEAN MART	9720 JONES RD STE 110	NNE 1 - 2 (1.902 mi.)	396	1911

ENF: Administrative Orders issued to Municipal Solid Waste, Petroleum Storage Tank and Multi-Media Sites

A review of the ENF list, as provided by EDR, and dated 06/09/2009 has revealed that there are 18 ENF sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NCI BUILDING SYSTEMS	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.165 mi.)	E19	54
KUBCO DECANTER SVCS	12231 FM 529, HOUSTON,	S 1/4 - 1/2 (0.448 mi.)	R106	504
ALFA LAVAL SERVICE & REPAIR	12249 FM 529 RD, STE A,	S 1/4 - 1/2 (0.450 mi.)	R129	611
FAIRBANKS MORSE ENGINE	12253 FM 529 RD, HOUSTO	S 1/4 - 1/2 (0.451 mi.)	R134	621
BROWN FINTUBE	12602 FM 529, HOUSTON,	SW 1/2 - 1 (0.576 mi.)	AC226	1288
HITEMCO SOUTHWEST	7134 SATSUMA DR, HOUSTO	WSW 1/2 - 1 (0.603 mi.)	AE237	1371
Lower Elevation	Address	Direction / Distance	Map ID	Page
JERSEY VILLAGE PLANT #2001	7641 WRIGHT ROAD	ENE 1/8 - 1/4 (0.180 mi.)	F24	116
CHAMPION COATINGS	7403 WRIGHT RD, HOUSTON	ESE 1/8 - 1/4 (0.187 mi.)	G37	213
GRAYLOC PRODUCTS	11835 CHARLES RD, HOUST	ESE 1/4 - 1/2 (0.308 mi.)	K57	262
COOPER CAMERON CORP	11800 CHARLES RD, HOUST	ESE 1/4 - 1/2 (0.342 mi.)	K62	283
SKW-MBT OPERATIONS	7100 WRIGHT RD, HOUSTON	SSE 1/4 - 1/2 (0.401 mi.)	M76	344
OCEANEERING INTERNATIONAL	11927 FM 529, HOUSTON,	SSE 1/4 - 1/2 (0.480 mi.)	U172	976
LONGHORN STEEL AND FLAMECUTTIN	11921 FM 529, HOUSTON,	SSE 1/4 - 1/2 (0.489 mi.)	U174	981
OCEANEERING INTERNATIONAL	11917 FM 529, HOUSTON,	SSE 1/4 - 1/2 (0.495 mi.)	U184	1078
CAMPBELL CONCRETE & MATERIALS	11913 FM 529 RD, HOUSTO	SSE 1/2 - 1 (0.502 mi.)	U189	1102
WEATHERFORD US LP	11909 SPENCER ROAD, HOU	SSE 1/2 - 1 (0.508 mi.)	V204	1203
ARSHAM METAL INDUSTRIES	11280 CHARLES RD	ESE 1/2 - 1 (0.803 mi.)	AN295	1579
BARRY PLUMBING COMPANY	11200 CHARLES RD	ESE 1/2 - 1 (0.841 mi.)	301	1592

Ind. Haz Waste: The Industrial and Hazardous Waste Database contains summary reports by waste handlers, generators and shippers in Texas.

A review of the Ind. Haz Waste list, as provided by EDR, and dated 12/31/2007 has revealed that there are 70 Ind. Haz Waste sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
SERMATECH DYNAMIC	7615 FAIRVIEW ST	NW 1/8 - 1/4 (0.148 mi.)	D10	14
NCI BUILDING SYSTEMS LP	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.165 mi.)	E21	71
GRANT PRIDECO HARMS ROAD FACIL	7755 HARMS RD	W 1/4 - 1/2 (0.361 mi.)	L71	322
HONING INC	12226 TAYLOR STREET	N 1/4 - 1/2 (0.411 mi.)	N80	413
FAIRBANKS MORSE ENGINE	12253 FM 529 RD	S 1/4 - 1/2 (0.444 mi.)	Q92	436
ALLEN STUART	12101 FM 529 RD	S 1/4 - 1/2 (0.447 mi.)	Q96	468
TOROMONT	12227-D FM 529	S 1/4 - 1/2 (0.447 mi.)	R100	489
DMI	12227-A FM 529	S 1/4 - 1/2 (0.447 mi.)	R103	494
FAB CORP HOUSTON TEXAS	12227B FM 529	S 1/4 - 1/2 (0.448 mi.)	R104	499
KUBCO DECANTER SVCS	12231 FM 529	S 1/4 - 1/2 (0.448 mi.)	R107	505
HORIZON DIRECTIONAL SYSTEMS	12233 FM 529	S 1/4 - 1/2 (0.448 mi.)	R110	517
SOUTHDOWN THERMAL DYNAMICS	12235 FM 529	S 1/4 - 1/2 (0.448 mi.)	R111	523
BFI THERMAL DYNAMICS	12235 FM 529 RM 101	S 1/4 - 1/2 (0.448 mi.)	R112	530
MOHR RESEARCH ENGINEERING	12237 FM 529	S 1/4 - 1/2 (0.449 mi.)	R114	537
BLACK MAX DOWNHOLE TOOLS	12245-H FM 529	S 1/4 - 1/2 (0.450 mi.)	R119	557
TYCO VALVES & CONTROLS INC	12247-C FM 529	S 1/4 - 1/2 (0.450 mi.)	R121	563
HANOVER MAINTECH	12249 FM 529	S 1/4 - 1/2 (0.450 mi.)	R126	579
ALFA LAVAL SERVICE & REPAIR	12249 FM 529 RD STE A	S 1/4 - 1/2 (0.450 mi.)	R127	587
CAMERON IRON WORKS ENVIRONMENT	12253 FM 529 RD	S 1/4 - 1/2 (0.451 mi.)	R135	622
QUEST PACKAGING INC 12255 FM 5	12255 FM 529 RD	S 1/4 - 1/2 (0.451 mi.)	R145	798

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
QUEST PACKAGING INC	12255 FM 529 NORTHWOODS	S S 1/4 - 1/2 (0.451 mi.)	R147	826
THE FLUOROCARBON COMPANY	12257 FM 529 RD.	S 1/4 - 1/2 (0.452 mi.)	R149	864
ELECTROPOLISH SERVICE	12233 FM 529	S 1/4 - 1/2 (0.460 mi.)	Q152	871
TEXAS TREE TRANS	12431 TAYLOR RD	NNW 1/4 - 1/2 (0.461 mi.)	S155	879
BROWN FINTUBE	12602 FM 529	SW 1/2 - 1 (0.576 mi.)	AC223	1275
OCEANEERING INTERNATIONAL	11927 FM 529	S 1/2 - 1 (0.597 mi.)	AD231	1297
HITEMCO SOUTHWEST	7134 SATSUMA DR	WSW 1/2 - 1 (0.603 mi.)	AE236	1359
HOMA BAY SCREEN PRINT INTL	7111 SATSUMA DR	WSW 1/2 - 1 (0.614 mi.)	AE245	1395
BONANZA MARBLE HOUSTON	7045 SATSUMA	SW 1/2 - 1 (0.671 mi.)	AH260	1463
FLUID MECHANICS VALVE	12803 FM 529	SW 1/2 - 1 (0.713 mi.)	AJ272	1490
HY TECH MFG	12811 FM 529	SW 1/2 - 1 (0.720 mi.)	AJ274	1499
SCS MACHINE & FABRICATING	6847 SIGNAT	SSW 1/2 - 1 (0.778 mi.)	AM285	1548
TECHALLOY COMPANY INC	7080 MAYARD ROAD	WSW 1/2 - 1 (0.829 mi.)	298	1580
EMPIRE COATINGS INC	6802 SATSUMA DR	SW 1/2 - 1 (0.894 mi.)	AR309	1603
Lower Elevation	Address	Direction / Distance	Map ID	Page
ARCTIC MACHINE	7411 WRIGHT RD	ESE 1/8 - 1/4 (0.184 mi.)	G31	149
CHAMPION COATINGS	7403 WRIGHT RD	ESE 1/8 - 1/4 (0.187 mi.)	G36	202
SUTTON COATING SERVICES INC	7700 WRIGHT RD	ENE 1/8 - 1/4 (0.201 mi.)	F39	216
FISHER INDUSTRIES	7227 WRIGHT	SE 1/4 - 1/2 (0.307 mi.)	55	256
GRAYLOC PRODUCTS	11835 CHARLES RD	ESE 1/4 - 1/2 (0.308 mi.)	K59	264
FAIRVIEW GARDENS DEVELOPMENTS	11800 CHARLES RD	ESE 1/4 - 1/2 (0.342 mi.)	K65	297
INDUSTRIAL CHEMICAL AND SCIENT	11722 CHARLES RD	ESE 1/4 - 1/2 (0.433 mi.)	P89	425
GENERON SYSTEMS INC	11985 FM 529	SSE 1/4 - 1/2 (0.462 mi.)	T157	885
MARINE & MAINLAND	11981 FM 529 STE A	SSE 1/4 - 1/2 (0.463 mi.)	T158	893
BASF CONSTRUCTION CHEMICALS LL	7100 WRIGHT RD	SSE 1/4 - 1/2 (0.465 mi.)	U163	908
APPLIED SYSTEMS	11935-A FM 529	SSE 1/4 - 1/2 (0.475 mi.)	T171	960
LONGHORN STEEL AND FLAMECUTTIN	11921 FM 529	SSE 1/4 - 1/2 (0.489 mi.)	U173	977
NATIONAL OILWELL	11919 FM 529	SSE 1/4 - 1/2 (0.492 mi.)	U177	988
NATIONAL OIL WELL	11919 FM 529 RD	SSE 1/4 - 1/2 (0.492 mi.)	U178	993
TRITON TOOL & SUPPLY INC	11917 SPENCER RD	SSE 1/4 - 1/2 (0.495 mi.)	U180	1023
OCEANEERING INTERVENTION ENGIN	11917 FM 529	SSE 1/4 - 1/2 (0.495 mi.)	U182	1040
REDLAND STONE PRODUCTS	11913 FM 529 RD	SSE 1/2 - 1 (0.502 mi.)	U194	1112
WEATHERFORD ENTERRA SPENCER RO	11909 SPENCER ROAD	SSE 1/2 - 1 (0.508 mi.)	V202	1136
WEATHERFORD ENTERRA	11909-A SPENCER RD	SSE 1/2 - 1 (0.508 mi.)	V203	1188
ALLOY & STAINLESS FASTENERS	11625 CHARLES RD	ESE 1/2 - 1 (0.529 mi.)	X210	1240
TESORO GAS MARKETING DIGAS CYP	17311 NORTHWEST FREEWA	YE 1/2 - 1 (0.558 mi.)	Z215	1254
L B FOSTER	11929 SPENCER RD	SE 1/2 - 1 (0.574 mi.)	AB219	1261
JONES ROAD EXXON 69395	17438 HIGHWAY 290 / J	ENE 1/2 - 1 (0.602 mi.)	AA234	1347
NATIONAL STEEL PRODUCTS	11919 SPENCER RD	SSE 1/2 - 1 (0.646 mi.)	248	1402
GUARDSMAN PRODUCTS INC	11502 CHARLES	ESE 1/2 - 1 (0.647 mi.)	AF249	1425
PATHFINDER ENERGY SERVICES 529	11997 FM 529 C	SE 1/2 - 1 (0.648 mi.)	251	1435
DRESSER-RAND POWER TURBO PRODU	11500 CHARLES RD	ESE 1/2 - 1 (0.649 mi.)	AF254	1440
Not reported		ENE 1/2 - 1 (0.661 mi.)	AG256	1450
AMERICAN WHOLESALE THERMOGRAPH		ENE 1/2 - 1 (0.661 mi.)	AG258	1456
WATER QUALITY SERVICES	17459 VILLAGE GREEN DR	ENE 1/2 - 1 (0.696 mi.)	AG270	1483
PINNACLE PRODUCTS INC	11330 CHARLES	ESE 1/2 - 1 (0.779 mi.)	AN287	1553
BATTELLE MEMORIAL INSTITUTE HO	11330 CHARLES DR	ESE 1/2 - 1 (0.779 mi.)	AN289	1563
ATLANTIC INDUSTRIAL SERIVCES	11453 FM 529 RD	ESE 1/2 - 1 (0.831 mi.)	AP299	1587
ATLAS BOLT HOUSTON TX	6722 NORTHWINDS	SE 1/2 - 1 (0.891 mi.)	AS308	1598
NORTHWEST DRIVE TRAIN SERVICE	11320 FM 529 RD BLDG A	ESE 1/2 - 1 (0.918 mi.)	AU323	1623
CBI NA-CON	11234 FM 529	ESE 1/2 - 1 (0.964 mi.)	AY349	1683

AIRS: The database lists by company, along with their actual emissions, the Texas Commission on Environmental Quality's air accounts that emit EPA criteria pollutants.

A review of the AIRS list, as provided by EDR, and dated 07/23/2008 has revealed that there are 20 AIRS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NCI BUILDING	7301 FAIRVIEW ST	SSW 1/8 - 1/4 (0.152 mi.)	E15	52
NCI BUILDING SYSTEMS L	7301 FAIRVIEW ST, HOUSTO	SSW 1/8 - 1/4 (0.152 mi.)	E16	53
NCI BUILDING SYSTEMS L P	7301 FAIRVIEW DRIVE	SSW 1/8 - 1/4 (0.165 mi.)	E20	71
HALE MILLS CONSTRUCTION	7800 WRIGHT ROAD	NE 1/4 - 1/2 (0.271 mi.)	148	233
BROWN RICE MILL	12010 TAYLOR RD	NNE 1/4 - 1/2 (0.423 mi.)	O83	419
NATIONAL OIL WELL	12225 FM 529	S 1/4 - 1/2 (0.447 mi.)	R99	488
QUEST CHEMICAL CORPORATION	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R146	802
KOCH HEAT TRANSFER COMPANY, LP	12602 FM 529	SW 1/2 - 1 (0.576 mi.)	AC222	1269
BONANZA MARBLE COMPANY	7043C SATSUMA DR	SW 1/2 - 1 (0.673 mi.)	AH261	1470
EMPIRE COATINGS INC	6802 SATSUMA DR	SW 1/2 - 1 (0.894 mi.)	AR309	1603
Lower Elevation	Address	Direction / Distance	Map ID	Page
JERSEY VILLAGE PLANT #2001	7641 WRIGHT ROAD	ENE 1/8 - 1/4 (0.180 mi.)	F24	116
CHAMPION COATINGS	7403 WRIGHT RD, HOUSTON	ESE 1/8 - 1/4 (0.187 mi.)	G32	153
CHAMPION COATINGS INC	7403 WRIGHT ROAD	ESE 1/8 - 1/4 (0.187 mi.)	G33	154
CHAMPION COATINGS	7403 WRIGHT RD	ESE 1/8 - 1/4 (0.187 mi.)	G34	155
SKW-MBT OPERATIONS INC	7100 WRIGHT ROAD	SSE 1/4 - 1/2 (0.465 mi.)	U162	908
MELENDY OPERATIONS	11913 FM 529 RD	SSE 1/2 - 1 (0.502 mi.)	U191	1105
BLAST CLEANING & PAINTING	11909 SPENCER ROAD (F.M	SSE 1/2 - 1 (0.508 mi.)	V201	1135
MARTIN MARIETTA MATERIALS, SOU	11913 FM 529	SE 1/2 - 1 (0.605 mi.)	AB242	1384
UNIVAR USA INC	11235 FM 529 RD,HOUSTON	ESE 1/2 - 1 (0.964 mi.)	AY348	1682
CHEMCENTRAL SOUTHWEST L.P.		ESE 1/2 - 1 (0.964 mi.)		

TIER 2: A listing of facilities which store or manufacture hazardous materials and submit a chemical inventory report.

A review of the TIER 2 list, as provided by EDR, and dated 12/31/2007 has revealed that there are 29 TIER 2 sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page	
SERMATECH DYNAMIC	7615 FAIRVIEW	NW 1/8 - 1/4 (0.148 mi.)	D12	29	
NCI BUILDING SYSTEMS - FAIRVIE	7301 FAIRVIEW	SSW 1/8 - 1/4 (0.165 mi.)	E23	99	
457 FAIRVIEW	7800 1/2 WRIGHT RD	NE 1/4 - 1/2 (0.270 mi.)	144	227	
457 FAIRVIEW	7800 1 2 WRIGHT RD	NE 1/4 - 1/2 (0.272 mi.)	149	234	
COH PWE WP GROUNDWATER JERSEY	7207 FAIRVIEW	SSW 1/4 - 1/2 (0.272 mi.)	J50	236	
QUEST CHEMICAL CORPORATION	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R142	779	
QUEST CHEMICAL CORPORATION	12255 FM 529	S 1/4 - 1/2 (0.451 mi.)	R146	802	
KOCH HEAT TRANSFER COMPANY, LP	12602 FM 529	SW 1/2 - 1 (0.576 mi.)	AC222	1269	
HITEMCO SOUTHWEST - SATSUMA	7134 SATSUMA	WSW 1/2 - 1 (0.603 mi.)	AE238	1375	
FOX METALS & ALLOYS	12660 FM 529	SW 1/2 - 1 (0.612 mi.)	AC244	1390	
ATLANTIC INDUSTRIAL SERVICES -	11953 FM 529	S 1/2 - 1 (0.766 mi.)	AK276	1516	
ELDRIDGE TRANSPORTATION CENTER	7600 N. ELDRIDGE	W 1/2 - 1 (0.769 mi.)	AL281	1538	
CROWN CASTLE USA 815639 PAZ	6825 SIGNAT	SSW 1/2 - 1 (0.802 mi.)	AM294	1572	
ELDRIDGE TRANSPORTATION CENTER	7900 N. ELDRIDGE	WNW 1/2 - 1 (0.850 mi.)	AQ302	1593	
HARRIS COUNTY MUD NO. 130 WATE	8150 N. ELDRIDGE	NW 1/2 - 1 (0.952 mi.)	AX337	1646	
Lower Elevation	Address	Direction / Distance	Map ID	Page	
JERSEY VILLAGE PLANT #2001	7641 WRIGHT ROAD	ENE 1/8 - 1/4 (0.180 mi.)	F24	116	

Lower Elevation	Address	Direction / Distance	Map ID	Page
JERSEY VILLAGE PLANT #2001	7641 WRIGHT ROAD	ENE 1/8 - 1/4 (0.180 mi.)	F30	147
CHAMPION COATINGS	7403 WRIGHT RD	ESE 1/8 - 1/4 (0.187 mi.)	G34	155
DEGUSSA CONSTRUCTION CHEMICALS	7100 WRIGHT ROAD	SSE 1/4 - 1/2 (0.401 mi.)	M78	345
Not reported	11913-A FM 529	SSE 1/2 - 1 (0.502 mi.)	U188	1096
"MARTIN MARIETTA MATERIALS SOU	11913 FM 529	SSE 1/2 - 1 (0.502 mi.)	U192	1106
"WEATHERFORD U.S., L.P."	11909 SPENCER RD.	SSE 1/2 - 1 (0.508 mi.)	V198	1127
COH PWE WP GROUNDWATER JERSEY	11905 SPENCER ROAD	SSE 1/2 - 1 (0.515 mi.)	V206	1229
MARTIN MARIETTA MATERIALS, SOU	11913 FM 529	SE 1/2 - 1 (0.605 mi.)	AB242	1384
DUPLICATE - WATER PLANT # 2	16601 VILLAGE DR.	ENE 1/2 - 1 (0.769 mi.)	279	1528
CHEMICAL LIME CO NORTHWEST	11236 FM 529	ESE 1/2 - 1 (0.963 mi.)	AY346	1671
CHEMCENTRAL SOUTHWEST L.P.	11235 FM 529	ESE 1/2 - 1 (0.964 mi.)	AY351	1689
DORSETT BROS. CONCRETE - PLANT	11206 FM 529	ESE 1/2 - 1 (0.978 mi.)	AY358	1704
"HANSON PIPE & PRODUCTS, INC."	11201 FM 529	ESE 1/2 - 1 (0.981 mi.)	AY367	1718

Due to poor or inadequate address information, the following sites were not mapped:

Site Name	Database(s)		
COH PWE WP GROUNDWATER JERSEY VILL	TIER 2		
COH PWE WP GROUNDWATER JERSEY VILL	TIER 2		
CYPRESS FAIRBANKS H S	FINDS, FTTS, HIST FTTS		
DRYCLEAN PLANET 5	DRYCLEANERS		
VIP CLEANERS	DRYCLEANERS		
NORTHGLEN SUBDIVISION	CERCLIS, FINDS		
DELROCK OIL REFINERY	CERCLIS		
P L HALL LANDFILL	SWF/LF		
DOSS RICHARD P- COUNTY	SWF/LF		
CITY OF GALENA PARK LANDFILL	SWF/LF		
CITY OF JACINTO CITY LANDFILL	SWF/LF		
ADDICKS FAIRBANKS LANDFILL	SWF/LF		
FAIRBANKS LANDFILL	SWF/LF		
CABELL MARCO CHRYSLER PLYMOUTH	LPST		
VILLAGE CLEANERS	RCRA-CESQG		
CROSSBEND VILLAGE	FINDS		
MOORPARK VILLAGE WWTP	FINDS		
LA FITNESS JERSEY VILLAGE	FINDS		
LAKES OF JERSEY VILLAGE	FINDS		
GATEWAY LAND DEVELOPMENT CROSSBEND	FINDS		
STATEHOOD HOLDINGS LAKES OF JERSEY	FINDS		
CITY OF JERSEY VILLAGE	ENF		
YORKTOWN ESTATES (TXR10SX54)	ICIS		

Jersey Village

16501 Jersey Village Jersey Village, TX 77041

Inquiry Number: 2552497.6

August 3, 2009

The EDR TX Oil and Gas Well Report

Environmental Data Resources, Inc. Oil and Gas Well Review

EDR reviewed available records made public by the state of Texas at the Texas Railroad Commission (TRC) and obtained information about oil and gas wells within the standard Area of Review (AOR-1/2 mile). EDR researched the oil and gas wells identified on county base maps at the Texas Railroad Commission and transferred the approximate oil and gas well locations onto a map for the client's review.

EDR cannot guarantee the accuracy of the information provided by state agencies. This review is intended to provide the user with a "working approximation" of reported oil and gas well locations and their associated data. Data provided in this report may include the following:

- Owner/Operator
- Total Depth (recorded in feet)
- Date Drilled
- Date Plugged
- API Number
- Well Type (Oil, Gas, Salt, Dry)

Please call EDR Nationwide Customer Service at 1-800-352-0050 (8am-8pm ET) with questions or comments about your report.

Thank you for your business!

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as leval advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EDR OIL/GAS REVIEW

Site Name: Jersey Village Inquiry #: 2552497.6


Site Address: 16501 Jersey Dr.

City: Jersey Village State: TX Zip: 77041

Well #	Owner/ Operator	Total Depth	Date Drilled	Date Plugged	API#	Туре
1	MOSBACHER ENERGY COMPANY 29.8924/-95.5963	14373	10/15/1968	8/21/1997	201-08012	PLUGGED GAS
2	EOG RESOURCES 29.8885/-95.5934	12000	NA	NA	201-32618	PERMITTED LOCATION

NO ADDITIONAL WELLS WITHIN 1/2 MILE RADIUS WERE IDENTIFIED ON THE TEXAS RAILROAD COMMISSION HARRIS COUNTY "OLD" AND "RETIRED" MICROFICHE MAPS.

Source: Texas Railroad Commission

Jersey Village

16501 Jersey Village Jersey Village, TX 77041

Inquiry Number: 2552497.7

August 3, 2009

The EDR TX Water Well Report

Environmental Data Resources, Inc. Water Well Review Report

EDR reviewed available records made public by the state of Texas at the Texas Water Development Board (TWDB) and the Texas Commission Environmental Quality (TCEQ) and obtained information identifying the approximate location of public and private water wells within the requested Area of Review (AOR). EDR researched the located and plotted water wells identified on county highway maps or USGS 7.5 minute topographic maps at the TWDB. EDR transferred the approximate water well locations onto a map for the client's review.

EDR cannot guarantee the accuracy of the information provided by state agencies. This review is intended to provide the user with a "working approximation" of reported well locations. The following are guidelines used to review available driller logs for water wells associated with client site information within the AOR.

- Identify Located Wells within the AOR according to the TWDB maps.
- Identify Plotted Wells within the AOR according to the TWDB maps.
- Identify Partially Numbered Wells within the AOR according to the TCEQ files containing records submitted by the well driller.
- Identify Unnumbered Wells within the AOR according to the TCEQ files containing records submitted by the well driller.

Description of Terms

Standard Area of Review-(AOR):

Standard area of review is a 1/2 mile radius around client specified target property.

Located Water Well:

Well locations that have been field checked by a TWDB or USGS staff member, spotted on a USGS 7.5' Topographical or county highway map, assigned a unique identification number, and filed at the TWDB.

Plotted Water Well:

Approximate well locations spotted on county highway maps by the TWDB staff members according to information submitted on the driller's log. The accuracy of the location for these wells is dependent on the driller. The state assigned unique identification numbers to these wells, but in high-density areas, a single identification number may represent multiple well locations. The TWDB eliminated this plotting activity in June 1986.

Partially Numbered Water Well: Water well locations established to within a 2.5 minute topographic quadrangle and identified by the TCEQ according to maps submitted with the driller's log. Each water well was assigned a State ID number by the TCEQ. **Note:** This method for recording water well locations was procedure from 1986 to 1991.

Unnumbered Water Well:

Well locations identified on the driller's logs and corresponding driller's maps maintained by the TCEQ records. **Note:** The TCEQ implemented this procedure in 1991.

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report AS IS. Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Environmental Data Resources, Inc.

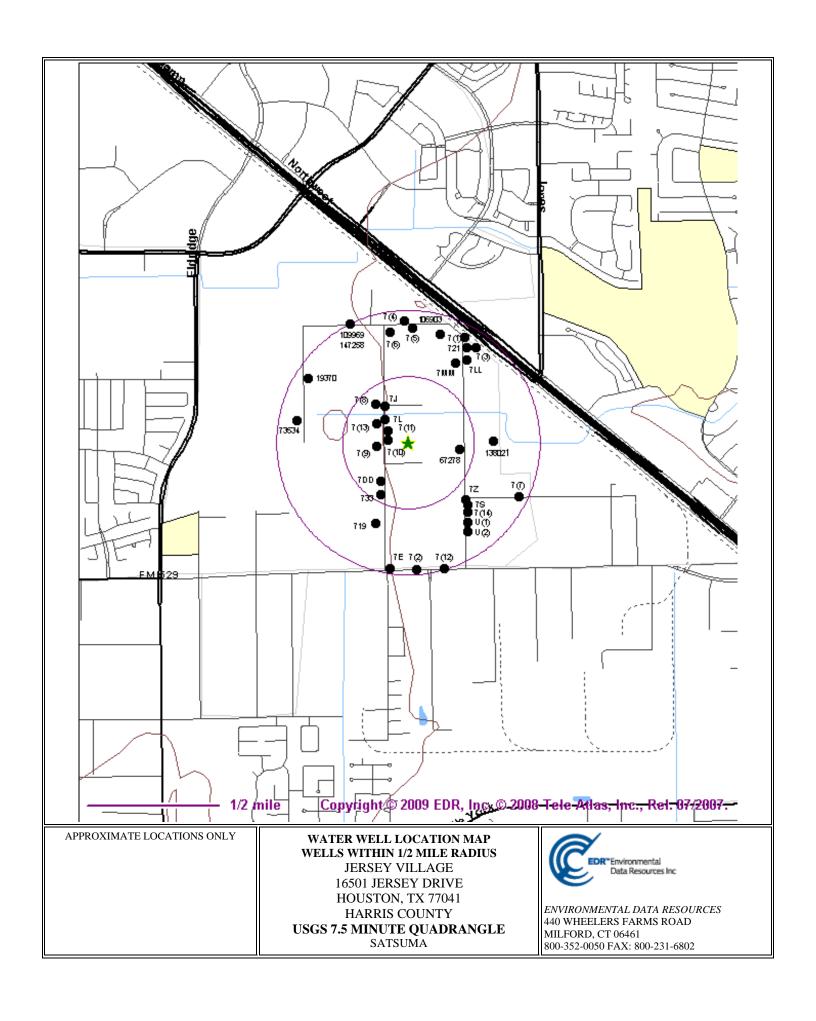
Water Well Review

Site Name: Jersey Village Inquiry: 2552497.7

Site Address: 16501 Jersey Dr.

City: Jersey Village State: TX Zip: 77041

WELL CLASSIFICATION	NUMBER IDENTIFIED WITHIN AOR
LOCATED	10
PLOTTED	8
PARTIALLY NUMBERED	14
UNNUMBERED	2
TOTAL NUMBER IDENTIFIED	34

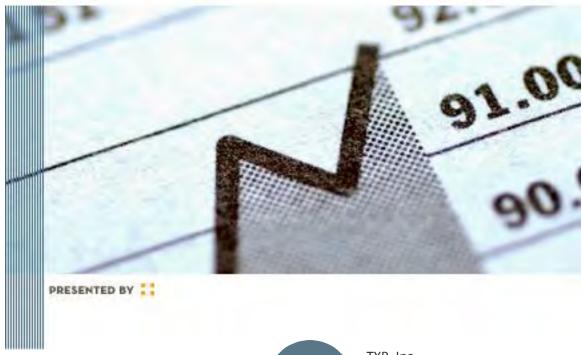

LOCATED WELLS: STATE GRID #65-04-719, 721, 733, TDLR#S 109969, 147258, 106903, 19370, 73534, 67278138021

PLOTTED WELLS: STATE GRID #65-04-7E, 7J, 7L, 7S, 7Z, 7DD, 7LL, 7MM

PARTIALLY NUMBERED WELLS: STATE GRID #65-04-7(1), 7(2), 7(3), 7(4), 7(5), 7(6), 7(7), 7(8),

7(9), 7(10), 7(11), 7(12), 7(13), 7(14)

UNNUMBERED WELLS: U(1), U(2)



Phase 1 Feasibility Memo

A	PPEND	IX	\mathbf{E} –	MA	RKET	FOREC	AST]	REPORT
---	--------------	----	----------------	----	------	-------	-------	--------

Preliminary Market Feasibility Analysis for Jersey Village Transit-Oriented Development

Prepared for Kimley-Horn and Gateway Planning Group Fall 2009

TXP, Inc.
1310 South 1st Street; Suite 105
Austin, Texas 78704
(512) 328-8300 phone
(512) 462-1240 fax

www.txp.com

Table of Contents

Introduction	1
The Market Environment	2
Near-Term	2
Market Area Real Estate Demand	3
Specific Assumptions	3
Buildout Scenarios & Market Demand	6
Development Orientation	6
The Value of Transit	7
Yields on Property as a Measure of Value	8
The Transit Premium	9
Conclusion	10
Appendix One – The Benefits of Urbanist Development	12
Appendix Two – The Value of Transit	

Introduction

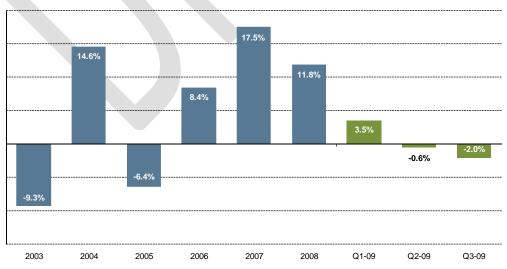
The City of Jersey Village is contemplating an ambitious effort to plan the future of the a possible transit-oriented development. As part of that effort, TXP has been tasked with conducting a market feasibility study to determine overall demand projections for the Study Area outlined in Figure One below. The analysis is broken into the following areas of discussion:

- 1. Market environment, including the macro situation, overall economic and demographic forecasts, and projections of specific real estate demand
- 2. Review of both development orientation and impact of transit
- 3. TXP projections for absorption
- 4. Conclusions

Figure 1: Study Area

Source: Kimley-Horn

The Market Environment


Near-Term

As the nation struggles to emerge from recession, there is no question that the Houston area and Jersey Village have felt the impact. The numbers tell the story, as job growth has slowed, sales tax revenue is stagnant, and development has more or less come to a halt. That having been said, the impacts in the Houston-Galveston region have been less profound than elsewhere, and the area should be well-positioned to bounce back. Factors that will contribute to the resurgence, aside from recovery of the national economy, include continued in-migration and overall population growth and well-diversified regional economy with a strong presence in energy, transportation, and technology. In addition, relatively low current market values, competitive labor costs, and a comparatively modest overall tax burden all indicate a cost environment that accommodates to future development and growth.

Table 1: Recent Jersey Village Indicators

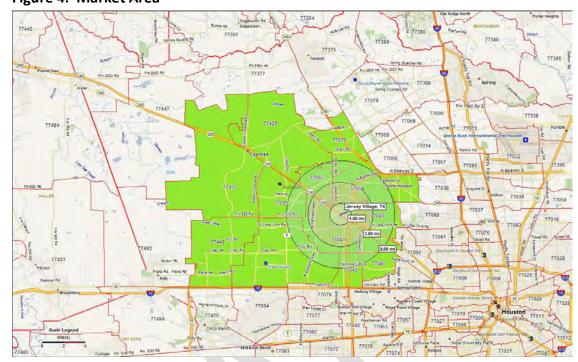
	A. Sales Tax	B. Population	C. County Unemp.	D. Single-Family Permits
2000	\$1,043,667	6,891	4.3%	28
2001	\$1,583,450	6,965	4.7%	30
2002	\$1,190,363	7,202	6.1%	54
2003	\$1,079,950	7,262	6.8%	34
2004	\$1,237,765	7,240	6.3%	5
2005	\$1,158,688	7,193	5.7%	23
2006	\$1,256,407	7,278	5.1%	38
2007	\$1,476,802	7,252	4.3%	36
2008	\$1,651,649	7,279	4.8%	14
Sources: A To	vas State Comptroller's (Office: B. Consus Burea	u. C. Burgau of Labor Statistic	cs: D. Consus Burgau

Figure 2: Recent Jersey Village Sales Tax Revenue Growth

Sources: Texas State Comptroller's Office; TXP

8.0% 7.6% 6.8% 6.7% 5.7% 5.6% 5 2% 5.0% 4.6% 2006 2008 2001 2002 2003 2004 2005 2007 2009

Figure 3: June Harris County Unemployment Rates


Sources: Bureau of Labor Statistics; TXP

Market Area Real Estate Demand

Specific Assumptions

- Base data was derived from a number of sources, including County Business
 Patterns, the Texas Comptroller's Office, the Bureau of Labor Statistics, the
 Census Bureau, and the Texas Real Estate Research Center.
- Market area population projections were based on the 3.0 Migration Scenario from the Texas State Data Center (2000-07), updated to reflect base data through 2008 for the county and local cities and 2007 data for the ZIP Codes in the Study Area. The estimate of the number of people per household comes from the Census Bureau, and is very gradually reduced over time in line with both historical patterns and anticipated demographic trends.
- Employment forecasts were developed using 2007 base data for the ZIP Codes referenced in the map and table that follows. Base data derived from County Business Patterns by sector is included as well. A twenty-year time planning horizon was assumed.
- A blended American Planning Association (APA) ratio of 650 sq. ft./employee
 was used to estimate aggregate new development required for
 retail/restaurant/entertainment. Similarly, an adjusted APA ratio of 250 sq.
 ft./employee was used to estimate aggregate new development required to
 meet office/commercial demand.

Figure 4: Market Area

Source: TXP

Table 2: Baseline Market Area Detailed Employment: 2007, by ZIP Code

	Total Jobs	Office-Related Jobs	Retail/Rest./Ent. Jobs	Other Sectors
77040	44,880	20,288	5,284	19,308
77041	50,726	12,722	2,075	35,929
77043	20,316	7,875	2,292	10,149
77064	19,344	7,330	3,083	8,931
77065	12,623	4,605	6,302	1,716
77070	25,337	11,581	9,619	4,137
77080	7,948	2,862	1,376	3,710
77084	25,764	12,948	6,187	6,629
77086	6,168	1,021	990	4,157
77095	12,225	4,830	3,788	3,607
77429	12,178	4,184	4,256	3,738
77433	2,775	1,273	919	583
77449	8,071	3,673	3,772	626
TOTAL	248,355	95,192	49,943	103,220
C	TVD			

Source: TXP

Table 3: Projected Market Area Population, Households, & Employment

	Population	Households	Office-Related Jobs	Retail/Rest./Ent. Jobs
2010	625,086	204,093	92,582	48,950
2011	637,588	208,913	93,598	49,657
2012	650,340	212,587	94,855	50,485
2013	663,347	217,929	96,129	51,327
2014	676,614	223,404	97,420	52,183
2015	690,146	229,018	98,729	53,053
2016	702,569	234,772	99,989	53,905
2017	715,215	240,671	101,265	54,771
2018	728,089	246,234	102,557	55,651
2019	741,194	251,926	103,866	56,545
2020	754,536	257,749	105,191	57,453
2021	766,608	263,707	106,471	58,345
2022	778,874	269,803	107,766	59,251
2023	791,336	275,497	109,077	60,171
2024	803,997	281,312	110,403	61,105
2025	816,861	287,249	111,746	62,054
2026	828,297	293,311	113,039	62,984
2027	839,894	299,502	114,346	63,928
2028	851,652	305,221	115,669	64,886
2029	863,575	311,049	117,007	65,858
2030	875,665	316,989	118,360	66,845

Table 4: Projected Market Area Overall Real Estate Demand

	Housing Units	Office-Related Sq Ft.	Retail/Rest./Ent. Sq. Ft.		
2010	4,900	-116,309	0		
2011	3,795	254,015	459,748		
2012	2,625	314,310	538,144		
2013	4,273	318,532	547,116		
2014	4,380	322,811	556,238		
2015	4,491	327,147	565,512		
2016	4,603	314,964	553,991		
2017	4,719	318,983	562,891		
2018	4,354	323,054	571,934		
2019	4,454	327,176	581,122		
2020	4,557	331,351	590,458		
2021	4,663	319,879	579,777		
2022	4,771	323,770	588,778		
2023	4,339	327,709	597,919		
2024	4,430	331,695	607,202		
2025	4,524	335,729	616,629		
2026	4,619	323,135	604,421		
2027	4,717	326,873	613,478		
2028	4,214	330,654	622,671		
2029	4,295	334,478	632,002		
2030	4,377	338,347	641,472		
Source: TX	Source: TXP				

Buildout Scenarios & Market Demand

The following table details the share of total market demand represented by each scenario. A general rule-of-thumb is to assume that no individual development can capture more than 5% of total market demand within a community; for a sub-region (such as Jersey Village) 1-2% is more likely to be appropriate for housing, while commercial located proximate to this type of existing and potential transportation capacity could easily absorb 5% of the market.

Table 5: Total Market Area Demand for Real Estate – Alternative Scenarios

	1%	2%	3%	4%	5%
Total Housing Units	924	1,848	2,772	3,696	4,620
Total Commercial Sq Ft.	179,598	359,196	538,794	718,392	897,990
Retail/Rest/Entertainment	63,283	126,566	189,849	253,132	316,415
Office	116,315	232,630	348,945	465,260	581,575

Development Orientation

If Jersey Village is to capture the projections outlined above, a development orientation that reflects a changing market structure is desirable. For example, a number of trends are beginning to influence land development and urban revitalization in the United States, including:

- Demographics, specifically smaller household sizes;
- Changes in the structure of the economy, with a heightened emphasis on adding value through the provision of service and knowledge;
- Shifts in consumer tastes and preferences, including a greater acceptance of owner-occupied multi-family housing and a strong desire for "authenticity" and "experience;"
- Technology, especially as it enables decentralized work and informs consumer tastes;
- Transportation, including congestion and rising energy costs, and
- *Cultural/entertainment*, an element of society that is increasingly multi-faceted and diverse.

Underlying all of the above (which have an impact through all of society) is the desire for what has been termed *Walkable Urbanism*. According to the Brookings Institute, "since the rise of cities 8,000 years ago, humans have only wanted to walk about 1,500 feet (approximately a quarter mile) until they begin looking for an alternative means of transport: a horse, a trolley, a bicycle, a car. This distance translates into about 160 acres – about the size of a super mall, including its parking lot. It is also about the size, +/- 25 percent, of Lower Manhattan, Downtown Albuquerque, the financial district of

San Francisco, Town Center Atlanta, and most other major Town Centers in the country."

What makes walkable urbanism function is not merely distance, but the experience – a pedestrian trip where one encounters a mix of sights and sounds in the context of a range of land uses and a diverse built environment. The translation is that "critical mass" occurs when visitors can find enough to do for an afternoon or an evening, residents' daily needs are largely met within easy access, and the underlying economics justify ongoing investment. When this happens (and is sustained), a dynamic system is in place that will create enhanced economic and fiscal value.

In this context, it is unlikely that this approach will allow Jersey Village to capture a disproportionate share of regional growth. However, failure to implement policies, procedures, and investment decisions related to infrastructure along these lines puts the community in danger of losing some it's "fair-share" to adjacent areas. If that happens, these forecasts are at risk.

The Value of Transit

Over the past decade, it has become clear that the presence of transit can increase property values and result in valuable development opportunities. Clearly, the value of transit is not limited to increased property values. Transit has the potential to offer a multitude of environmental, social, and fiscal benefits, summarized in the table below:

Table 6: Benefits of Transit

Environmental Benefits	Social Benefits		
Reduced traffic congestion	Improved social cohesion through community interaction		
Reduced fuel consumption	Improved fitness and health as a result of increased walking and biking		
Better air quality	Reduced traffic accidents		
Reduced sprawl	Improved transportation options, particularly for non-drivers		
Conservation of open space	Reduced consumer transportation costs		
Fiscal Benefits	Expanded labor market shed for employers		
Reduced road and parking facility costs	Improved access to job opportunities for workers		
Economic development benefits through agglomeration efficiencies/productivity	Neighborhood revitalization		
Increased property values/tax revenues	Source: "Capturing the Value;" (see Appendix 2)		

To attempt to quantify the benefits listed above for any transit system or single transit station presents many challenges. Some of these benefits accrue to society as a whole, some to private interests alone, and several accrue to both the private and the public sectors. Furthermore, because many of these benefits are intersecting or are otherwise hard to disaggregate - such as the relationship between reduced sprawl and open space conservation - it can be very difficult to avoid double counting. As a result, the

analytical focus typically is on measuring value through yields on property, i.e. real

Yields on Property as a Measure of Value

estate prices.

Throughout the U.S., evidence from the research literature has demonstrated that access to transit increases the value of nearby property. The results of studies in range of communities across the U.S. are summarized in the table below. Fifteen of these studies reported that properties that were located near a transit station experienced a premium effect in terms of obtaining a higher value than comparable properties without transit access. The studies listed below and in Appendix 2 also confirm that increased value has been realized for both commercial and residential properties.

Table 7: Summary of Estimated Property Value Premium

	Range of Estimates	Location/Analysis	
Single-Far	nily Residential		
Low	+2% within 200 ft of station	San Diego Trolley - 1992	
High	+32% within 100 ft of station	St. Louis Metrolink Light Rail - 2004	
Condomin	ium		
	+2 to +18% within 2,640 ft of station	San Diego Trolley - 2001	
Apartment	:		
Low	zero to +4% within 2,640 ft of station	San Diego Trolley - 1992	
High	+45% within 1,320 ft of station	Valley Transportation Authority - 2004	
Office			
Low	+9% within 300 ft of station	Washington Metrorail - 1981	
High	+120% within 1,320 ft of station	Valley Transportation Authority - 2004	
Retail			
Low	+1% within 500 ft of station	Bay Area Rapid Transit - 1978	
High	+167% within 200 ft of station	San Diego Trolley - 2004	
Source: "	Capturing the Value" (see Appendix 2)		

The Transit Premium

Figure 5 presents a hypothetical example that illustrates how property values might increase over time as a result of new transit service. This "transit premium" is the estimated amount a property owner near a new transit station could expect to realize that is attributable to presence of transit. The impact of transit is expected to begin when public discussion of a new transit system begins, or when a new transit project is first announced. Over time, property values will continue to rise as it becomes more likely that the transit will be built, and the opening of transit grows nearer. As the plans solidify, the project receives funding, construction begins and the commencement of service grows closer, the value continues to increase. On the day the transit opens, most of the value inherent in the increased accessibility provided by transit is realized. There might also be the potential for additional growth in property values, particularly if the transit system is continuing to expand, or if other factors increase the desirability of locating near the transit station, such as rising gas prices, increased auto traffic, or station area access improvements.²

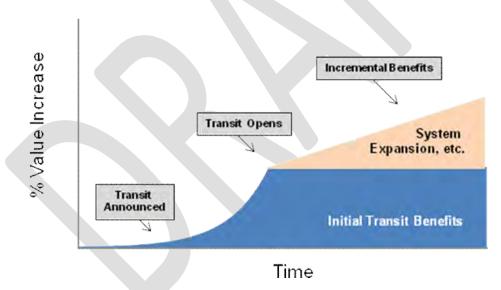


Figure 5: The Value Curve in Theory

Source: Spectrum Economics, TXP

¹ Note that this is a stylized example, and actual property value impacts would tend to fluctuate over time depending on expectations about future transit service and the value conferred to surrounding properties.

² Planning efforts and policy changes such as station area planning, zoning modifications and new developer incentives could significantly impact the shape of this curve. However, for the sake of simplicity, these impacts are not reflected in the chart.

Property values can be separated into two components: land value and structure value. The "transit premium" is really a land value premium, because the benefit of transit is primarily a function of the location of the property. The structure value is the value of any building or other improvement on the property, typically estimated as the amount that it would cost to replace the building. The other component of property value is the land value, which reflects not only the value based on the nature of the soil and terrain (e.g., mineral rights or agricultural potential), but also the benefits that accrue to a location based on its surroundings (e.g., the benefit of being in an appealing neighborhood, on a hill with a fantastic view, or near transit). One way to understand this is to consider the fact that the "replacement cost" of a building will be about the same anywhere within a region, but the value of the property will depend on where it is located. This variation in property values is attributable to differences in land values, not in building values. The introduction of new transit service impacts land values by changing the desirability of a property's location. In some cases the increase in value reflects an immediate benefit due to proximity to transit, such as when an office property can achieve higher rents due to its location near a new transit stop. In other cases the value reflects the expectation of future value; for instance, while a property with an auto-oriented use such as a gas station may not benefit directly from new transit service, the land value might increase to reflect the potential for redevelopment of the property to a more intensive use in the future.

Conclusion

The potential development of the Study Area anchored by a future Transit Oriented Development (TOD) shows promise to capture a significant share of Northwest Harris County's future growth. Based on an assumption of capturing 1% of the residential and 5% of the commercial regional demand, Jersey Village can expect to see the development over the next twenty years of just under 1,000 housing units and approximately 900,000 square feet of commercial space in the Study Area. This "footprint" is roughly comparable to the City Centre project in process near I-10 and Beltway 8, which will include 650 residences, 950,000 square feet of commercial space, and a 245-room hotel on a total of 37 acres. While the details inevitably will be different (the TOD, for example, likely puts a greater emphasis on residential), the order of magnitude is similar.

It is important to note, meanwhile, that the success of the effort is not dependent on rail transit – while rail transit will have a positive impact on buildout values and density, careful planning and appropriate regulatory and infrastructure decisions are the key elements to the project's overall success. At the same time, the design and intensity of actual development is dependent on multiple factors that can impact the amount of

land that would be appropriate for transit-oriented development associated with the rail station and access to the future managed lanes for the 290 expansion. Those factors include but are not limited to:

- the type of commercial and residential development that occurs initially, and the proportion of urban residential versus lower density residential over time;
- development phasing;
- structured parking capacity over time;
- the potential for a hotel and related entertainment; and
- the level of public participation in infrastructure necessary to achieve higher intensity development.

Accordingly, the decision to annex and the level of annexation should be considered in terms of the intensity and design character of the development, which is not necessarily simply a factor of regional market potential. The relationship of design, intensity and likely need for annexation could be explored in more particular detail through the second phase of this initiative during the detailed planning process.

Appendix E-1 – The Benefits of Urbanist Development

Urbanism (also referred to as "new urbanism") is a dynamic urban design movement that is seen as part of a broader trend toward the restoration of community and concern for a more sustainable environment. Charles Bohl, in his seminal book *Place Making*, defines urbanism as an innovative design concept that applies "the best urban design practices from the 'traditional urbanism' found in historic town centers and main streets, while pragmatically adapting them to modern lifestyles, business practices, and technologies." Urbanism has been characterized by New York Times architecture critic Herbert Muschamp as the "most important phenomenon to emerge in American architecture in the post-Cold War era."

Underlying new urban development ideals is a belief that the physical design of many communities and regions is seriously impairing quality of life, contributing to traffic congestion, environmental degradation, and a lost sense of community. Todd Bressi writes,

...the New Urbanism is not a romantic movement; it reflects a deeper agenda. The planning and design approaches...revive principles about building communities that have been virtually ignored for half a century: public spaces like streets, squares, and parks should be a setting for the conduct of daily life; a neighborhood should accommodate diverse types of people and activities; it should be possible to get to work, accomplish everyday tasks (like buying fresh food or taking a child to day care) and travel to surrounding communities without using a car.

Bressi continues by stating that urbanists pay close attention to architecture – particularly to where a building sits on the lot, its mass, and exterior details, arguing that only certain types of buildings can create the range of public and private spaces that successful communities require. He notes that "the primary purpose of design rules is to force greater attention to detail, thereby invigorating urban and suburban architecture and imparting a greater level of civility to the streetscape."

Key Factors of New Urban Developments

A common characteristic of conventional real estate development is the presence of formula-driven designs that follow a set script, regardless of the place where the project is built. As Charles Bohl has noted, "while the real estate industry has become very good at building these projects, the projects themselves are not very good at building communities." Urbanism, on the other hand, is about reforming the design of the built environment. It revives the lost art of "place-making" and creates

environments that are distinctly different from the standard product types. Bressi contends that:

Buildings should not be conceived as objects isolated from their surroundings; they should contribute to the spatial definitions of streets, parks, greens, yards, and other open spaces. The New Urbanists draw upon a range of design traditions for inspiration. Their ideas about the relationships between planning and architecture reach back to the City Beautiful and Town Planning movements, which in turn reach back to Renaissance and Classical cities.

Some of the key factors of this approach to project development are outlined below.

Providing a Sense of Community

Thinking about public space in new ways that encourages sociability among residents and creates a sense of community is a key component of new urban design. Numerous studies have pointed to Americans' growing dissatisfaction with the feeling of "separateness" that comes from living and working in traditional suburbs and have identified a "quest for community" that is felt across society.

Sociologist Ray Oldenburg has described this phenomenon by naming the various places that humans live and interact. The home is the "first place," the workplace is the "second place," and community gathering places outside of home or work such as town squares, village greens, cafes, or taverns are identified as "third places." Oldenburg maintains that "third places" are what is absent in suburban neighborhood development and they are the missing ingredient that people in those areas are searching for today.

New urban developments fulfill this need and, if properly designed, have become magnets for residents and visitors alike. As Bohl notes,

...today's town center projects typically revolve around a central plaza or park that establishes a public atmosphere and provides an ideal setting for the cafes, taverns, and bistros celebrated by Oldenburg. In fact, it is the space between buildings – the public realm of plazas, greens, squares, and walkable streets – that enables a town center or a main street to act as the third place for nearby neighborhoods and communities.

Creating a "Place Identity"

Physical places that promote sociability have become critical for building strong communities and creating a unique sense of "place." Booth, Leonard & Pawlukiewicz from the Urban Land Institute note that place making is the essence of real estate development, and "establishing a live-work-shop environment with a sense of place is a community need as well as an aspiration." Places that are desirable appeal to all the senses - sight, sound, smell, taste, and touch. Rather than relying on formulaic real estate products, new urban developments are a rich mix of local activities, aesthetic design, quality, and price.

As noted on Smart Growth Online, new urban developments are designed to:

...create interesting, unique communities which reflect the values and cultures of the people who reside there, and foster the types of physical environments which support a more cohesive community fabric. Smart growth promotes development which uses natural and man-made boundaries and landmarks to create a sense of defined neighborhoods, towns, and regions. It encourages the construction and preservation of buildings which prove to be assets to a community over time, not only because of the services provided within, but because of the unique contribution they make on the outside to the look and feel of a city.

Whereas many conventional developments, such as shopping malls or retail strip centers, are focused exclusively on trade, Bohl notes that new urban market and town squares are designed to be not only "consumer space," but are clearly recognized and experienced as "public space," with a civic character that transcends the commercial activities that take place there.

Providing a Mix of Land Uses

A critical component of achieving better places to live is an integration of mixed land uses. Mixed uses create a critical mass and a sense of place by affording the community a wider range or goods, services, and experiences at one location, thereby increasing connectivity and choice. By putting uses in close proximity to one another, alternatives to driving, such as walking or biking, become viable.

Providing a mix of land uses generally refers to offering residential, retail, and office space within close proximity to one another. Booth, et al. note the economic synergy that happens from mixed uses in an new urban development:

Office uses feed retail operations by supplying customers for stores and restaurants both during the day and after work. Retail uses within walking distance of employment or residences – restaurants, bookstores, clothing stores, gift shops, and coffee bars – reinforce amenities that allow and encourage employees and residents to go out to lunch or run errands without relying on their cars. The addition of theaters, museums, art galleries, libraries, post offices, and town halls that are properly integrated...attracts significant pedestrian traffic, which supports a range of other uses.

Creating Walkable Neighborhoods

At the heart of new urban design is the concept of walkable neighborhoods; walkable communities are desirable places to live, work, learn, worship, and play. These neighborhoods respect the human scale by providing pedestrian-friendly spaces that ensure that users feel at home and can navigate easily by foot within an area. As Bohl notes, "the way that streets and pathways weave through the town center, connecting its buildings and public spaces, can provide pedestrians with a sense of discovery and delight that is seldom experienced in the suburban landscape, and that is essential to the town center experience."

Creating a sense of enclosure on a street is important in honoring the human scale and helping to define an area. It is thus crucial to pay attention to the proportion between the height of the buildings and the amount of open space; ideally, new urban designs achieve a tight 1:1 relationship and thus are much easier for pedestrians to navigate. By contrast, Bohl notes that:

Streets in suburban areas are typically many times wider than the heights of the buildings than line them, often reaching ratios of 1:6 and more. Such wide streets prevent any sense of spatial enclosure from being achieved and are more difficult for pedestrians to cross.

Henton & Walesh, discussing the vital role of well educated, technically savvy young people in the growth of the new economy, note that these workers are attracted to places that have a lively mix of activity that need not be accessed by car. As one young worker told the Wall Street Journal, "It's a lot more fun to be in a locale where you can go for a walk and have a nice dinner, or shop and take in a sports game, than it is to be isolated in some sprawling suburban office park where a little truck comes by at lunch and sells microwave burritos." Providing pedestrian-friendly activities thus give new urban communities an edge in attracting and retaining workers and residents.

In addition to creating a more walkable environment, good urban design can also incorporate "traffic calming" changes to streets and sidewalks to make them safer, more attractive, and more livable to both pedestrians and bicyclists alike. Researcher Emily Drennen conducted a 2003 study of the economic effects of traffic calming measures on twenty-seven small businesses in the Mission District of San Francisco. Merchants were interviewed about how the Valencia Street bicycle lanes had impacted their businesses. Four and a half years after the bike lanes were built, the vast majority of the business owners expressed support for the bike lanes. Respondents generally felt that the bike lanes had made the street more attractive and had a generally positive impact on their business and/or sales.

Preserving Open Space

Greenspace or "open space" is broadly referred to in new urban design to mean natural areas both in and surrounding developments that provide important community space, habitat for plants and animals, recreational opportunities, places of natural beauty, and critical environmental areas (e.g., wetlands).

Increasing numbers of people are concerned about the natural environment and value access to open space in both their private life and in their workspace. A healthy environment, rather than viewed as an added bonus, is now seen as one of an area's prime economic assets. Fortunately, the divide that existed in the past between developers and environmentalists is gradually being eroded as both sides realize the interconnection and interdependence of a development's preservation of the natural environment and its economic viability.

New urban developments are designed to protect and preserve open spaces, thereby providing environmental quality and health benefits that are significant. According to Smart Growth Online,

Open space protects animal and plant habitat, places of natural beauty, and working lands.... Additionally, preservation of open space benefits the environment by combating air pollution, attenuating noise, controlling wind, providing erosion control, and moderating temperatures. Open space also protects surface and ground water resources by filtering trash, debris, and chemical pollutants before they enter a water system.

In addition to environmental benefits, the preservation of open spaces can give a region a competitive economic edge. Open spaces can offer an amenity that a region may not currently possess in abundance, enabling the region to retain the people that currently

live and work there by giving them a disincentive to relocate. Open spaces can also help a region compete with other communities in attracting businesses and residents, as well as enabling it to compete for tourist dollars. And, research has shown that oftentimes it makes good economic sense to preserve a parcel of land rather than develop it; a number of recent studies show that parks and open space development in many instances increases residential property values and the property tax base of communities.

Economic Development and Public Sector Benefits

Urbanism in many ways reflects the changing nature of the American economy and in turn the values of the American people. New urban developments provide numerous benefits to residents in the form of a higher quality of life, better places to live, work, and play, higher and more stable property values, and a healthier lifestyle with more walking and better access to the natural environment. Businesses and municipalities also benefit from urbanism; the economic development and public sector benefits of new urban communities will be discussed below.

Economic Development Benefits

According to Henton & Walesh, quality of life has become a community's most valuable asset in the new economy. As Smart Growth Online reports, "recent trends in the global economy – industrial clustering and specialization, diversification of the workforce, reintegration of work and home – are placing a premium upon community character and quality of life."

New economy companies are attracted to new urban communities for a variety of reasons. Companies realize their workers want to work and live in areas that offer a vibrant social life, environmental amenities, and a reasonable commute. Talent is attracted to sociable communities – places with destinations, public and civic spaces, plenty of open spaces – where they can come together with colleagues or friends either through planned or chance encounters. In addition, as business is increasingly being conducted outside the boardroom – in restaurants, health clubs, and other public spaces – access to places where people can come together, converse, network, and share ideas is paramount. Muro and Puentes note that:

Regional economic performance is enhanced when areas are developed with community benefits and the promotion of vital urban centers in mind. Studies show that productivity and overall economic performance may be improved to the extent compact, mixed-use development fosters dense labor markets, vibrant urban centers, efficient transportation systems, and a high "quality-of-place."

Richard Florida, who has written extensively about the new knowledge economy, notes

that knowledge workers like to mix fun with work, to be close to stimulations from colleagues, in close proximity to outside activity and recreation, and live and work in places convenient to services and recreation. He goes on to say:

In this milieu, talent is scarce. Everybody is competing for the best people, and if you don't have quality of life and quality of place, you won't get talented people. Skilled talent calls the shots in where and how they want to work.

Companies must locate in such locales to attract and retain quality employees. In discussing how the state of Wisconsin can successfully integrate into the new economy, commentators noted that:

A higher level of diversity in urban environments can be achieved through the creative design of our built environments and through the emphasis we place on innovative small businesses and attractions. New Urbanism ideals also help create diversity by emphasizing mixed-use developments and attractive architectural styles. Finding new uses for historic buildings also provides a mixture of old and new charm to urban environments. Local governments can also encourage small business startups of ethnic restaurants and unique shops to increase diversity in their region.

In essence, the private sector in the new economy equates competitive advantage with the ability of being where the action is, and to them, the action is in new urban communities.

Public Sector Benefits

Tax Base Enhancement

In order to properly assess the fiscal benefits of new urban developments to the public sector, it is important to understand how these developments operate financially and how they are different from traditional suburban developments. According to Christopher Leinberger in a paper for *The Brookings Institution*, the investment cycle for many income-oriented conventional developments peaks around year seven. When comparing new urban and conventional developments on a short-term basis, therefore, conventional developments often project better cash flows as evaluated by internal rates of return. New income peaks can be achieved in subsequent years, but this often requires a major investment of additional capital. If a suburban development is no longer "cutting-edge," i.e. maintaining its viability, the influx of capital does not occur, and the development begins to decline. This has become a common occurrence in

suburbia, and has created a "throwaway built environment" that has largely contributed to urban sprawl. The area formerly known as the "Miracle Mile" in 1980's Atlanta is an example of such a decline; it is now filled with over 15 dead or dying strip malls because the market has moved farther out and developers are not inclined to reinvest in it.

New urban developments, on the other hand, generally create and sustain value in excess of conventional developments, though their short-term performance may not be as attractive. This can be due, in part, to the quality (and thus cost) of architecture and construction intrinsic to new urban design, the amount of open space provided in the overall development, or the higher cost of financing. However, what may be lost in the short-term is made up for in the mid- and long-term. Leinberger notes that:

The major reason progressive development seems to yield higher mid- and longterm returns and has a longer life is the pedestrian nature of its design. In stark contrast to conventional development with its car-dominated character, progressive developments create special places that are rather rare in this country.

The desirable nature of new urban developments, including the mix of land uses and physical context, translates into increased property values in the shorter run; in the longer run, Muro and Puentes note that these developments

...may enhance regions' tax bases, create wealth through housing appreciation, and boost property tax collections. In that sense, smart growth may well create substantial value by enhancing the real estate market.

Increased real estate values in turn can make a tremendous difference in the overall value of the local tax base, and it is possible to develop some indication of the impact of a new urban development approach through evaluation of residential values.

Researchers at George Washington University developed estimates of the incremental gain per unit attributable to traditional neighborhood design at the Kentlands, a new urban project in Maryland. The researchers estimated the price that homeowners were willing to pay for houses in Kentlands and comparable homes in surrounding traditional subdivisions. Based on their analysis, housing units in the new urban development commanded an 11.7 percent market premium, all other factors held constant. This premium existed in both new and resale markets.

Cost of Service Reduction

Muro and Puentes reviewed the best academic empirical literature on fiscal effects of growth and development for the Brookings Institution and reported that overall, the cost of providing public infrastructure and delivering services can be reduced through thoughtful design and planning. The logic is straightforward; compact, less sprawling development patterns can reduce the capital and operations costs governments incur from new growth. The authors identify two related ways urban form can decrease costs:

- Economies of scale because the marginal cost of serving additional population decreases as more residents cluster within a small geographic area. Also referred to as "density efficiencies."
- Economies of geographic scope because the marginal cost of serving each additional person decrease as each person locates more closely to existing major public facilities.

Muro and Puentes report that over the year 1999-2000 states and localities nationwide spent nearly \$140 billion on capital outlays for infrastructure shaped by development patterns such as elementary and secondary schools, highways, sewer lines, solid waste management, and utility systems. More than \$200 billion was spent on recurring expenditures to provide such services such as highway maintenance, police and fire protection, trash collection, and utility service. The authors note that:

Considering that these outlays represent almost 20 percent of the \$1.7 trillion states and localities spent during 1999-2000, realizing even modest percentage savings from smart growth could save taxpayers billions. Such savings grow only more attractive in light of economic stagnation, weakening federal support for states and cities, and the twin challenges many states face with shrinking revenue bases and increasing mandatory spending.

Several studies reported by the authors predict that rational use of more compact development patterns from 2000 to 2025 promise the following sorts of savings for governments nationwide: 11 percent, or \$110 billion, from 25-year road-building costs; 6 percent, or \$12.6 billion, from 25-year water and sewer costs; and roughly 3 percent, or \$4 billion, for annual operations and service delivery.

Appendix E-2 – The Value of Transit

Note: This report is a shortened version of the meta-analysis entitled "Capturing the Value of Transit" prepared for the United States Department of Transportation and published in November 2008 by the Center for Transit-Oriented Development.

Introduction

There is a growing awareness in the United States that public transit offers numerous economic, social, and environmental benefits, and the perceived value of these benefits is, to a certain extent, reflected in increased property values near transit stations.

Americans are increasingly prioritizing the advantages provided by neighborhoods near transit, including economic savings to households, reduced carbon emissions, healthier lifestyles, fewer traffic accidents, and reduced suburban sprawl. At the same time, demographic and cultural changes are resulting in a growing interest in cities and urban lifestyles, which means that there is increased demand for the kind of neighborhoods that are most likely to be served by transit. These trends are only reinforced by recent spikes in oil and gas prices. Numerous studies have measured and documented a value "premium" for properties near transit, and many agencies and individuals are interested in tapping into this value.

It is no wonder that transit agencies are intrigued by value capture. Rising construction costs and competition for scarce federal dollars make it increasingly difficult to fund new transit systems and or system expansions. Value capture is seen as a way to pay for capital projects as well as a potential source of income for paying ongoing operating costs. However, transit agencies are not the only ones hoping to capitalize on the value created by transit. Local jurisdictions hope to tap into rising property values to encourage transit-oriented development (TOD) and help pay for neighborhood improvements such as local infrastructure, improved pedestrian linkages, and affordable housing. Meanwhile, property owners and developers see transit as a highly desirable amenity that has the potential to increase the value of surrounding properties and create lucrative development opportunities.

As various stakeholders attempt to capture the value created by transit, however, they are meeting with difficulties in measuring the extent of the potential value and finding the best ways to capture it. This paper attempts to address some of these challenges by:

• Summarizing the findings of previous studies that measure the impact of transit on nearby property values;

 Providing a detailed discussion of the role of property owners and developers in value capture strategies;

- Offering examples of tools currently used by transit agencies to capture the value of transit to help defray capital costs; and
- Providing a framework for thinking about what kinds of value capture strategies are possible in a given situation.

Measuring Value

Numerous studies have evaluated the impact of transit on surrounding real estate, and found that transit can generate a significant amount of value for nearby property owners. This section provides a summary of literature on the topic, beginning with some context about the history of transit in the US and other factors that that have influenced interest in the topic of value capture over time.

Historical Context

The idea of using transportation to open up new land for development, thereby increasing its value, is hardly new: after all, this was the basic motivation behind most of the privately developed streetcar systems in the early 20th century, which were built for the express purpose of maximizing the value of surrounding real estate. The rich history of the street-railway companies that operated in U.S. cities from the late 19th century to the mid-20th century has been documented by Scott Bernstein in Street Smart: Streetcars and Cities in the Twenty-First Century, along with an overview of the innovative financing mechanisms that they employed.³

Beginning in the late 1970s, a new wave of transit was built in the US, to provide rail transit in growing metropolitan areas that previously did not have urban rail systems, such as Washington DC, San Francisco and Atlanta. These systems were built with the purpose of relieving congestion, and were funded entirely by the public sector. In contrast with the systems built before World War II, the new systems were built with the expectation that most transit riders would reach the station by car, and as a result there were few attempts to integrate new stations with surrounding land uses.

³ Bernstein, Scott. "How Streetcars Helped Build American Cities," in *Street Smart: Streetcars and Cities in the Twenty-First Century*, eds. Gloria Ohland and Shelly Poticha, (Reconnecting America, 2006).

⁴ Schneider, Joachim. *Public Private Partnerships for Urban Rail Transit*, Deutscher Universitats-Verlag/GWV Faschverlage GmbH, Wiesbaden, 2004, pg. 40.

⁵ Belzer, Dena and Gerald Autler, *Transit Oriented Development: Moving from Rhetoric to Reality*, discussion paper prepared for the Brookings Institution and the Great American Station Foundation, June 2002.

The concept of value capture as a means to fund or recover the cost of public infrastructure investments became the subject of increased interest during this same period, particularly after the publication of Windfalls For Wipeouts: Land Value Capture and Compensation (Hagman and Misczynski, 1978). In this extensive study of the impact of public policy on land values, Hagman and Misczynski examined how windfalls to property owners that result from public infrastructure investment could be captured by cities (or other public agencies) through taxes or fees that are tied to the increase in land value.⁶

Another major wave of new transit was built beginning in the 1980's, consisting mainly of new light rail systems, most in existing freight rail corridors and on abandoned freight right-ofways. Examples include San Diego (1981), Portland (1986), Los Angeles (1990), St. Louis (1993), Denver (1994), and Dallas (1996). This period also saw growing interest in transit-oriented development (TOD) as a way to promote sustainable, transit-supportive land use patterns near transit. Transit agencies such as the Bay Area Rapid Transit District (BART) and Washington Metropolitan Area Transportation Authority (WMATA) began to look for ways to promote the right kind of development near existing transit stations.

During the 1990's and 2000's the transit boom has continued. Cities such as Portland, Seattle, Little Rock, Tacoma, Tampa and Memphis are building new streetcar systems. And beginning in 2003, a new generation of transit systems are being planned, and in some cases financed, on a more extensive scale. While most of the previous wave of transit was planned one segment or corridor at a time, systems such as Denver, Houston and Salt Lake City are being planned and implemented at the system level. As these systems are planned and built, transit agencies are exploring new financing methods such as public private partnerships, and questions are arising about how these value capture strategies might be implemented on a broader scale.

Defining Value

Clearly, the value of transit is not limited to increased property values. Transit has the potential to offer a multitude of environmental, social, and fiscal benefits. To attempt to quantify the benefits listed above for any transit system or single transit station

⁶ Hagman, Donald and Dean Misczynski. *Windfall for Wipeouts: Land Value Capture and Compensation*, (American Society of Planning Officials, 1978).

⁷ Schneider, p. 40.

presents many challenges. Some of these benefits accrue to society as a whole, some to private interests alone, and several accrue to both the private and the public sectors. Furthermore, because many of these benefits are intersecting or are otherwise hard to disaggregate - such as the relationship between reduced sprawl and open space conservation - it can be very difficult to avoid double counting.

In spite of these challenges, many academic studies have attempted to quantify the benefits of transit in dollar terms. Depending on the researcher's area of interest, they have taken a different approach to the question of how to measure value, and not all of the studies relate specifically to real estate. For example, a 1986 value capture study of heavy rail examined the commute cost savings in annual dollars for households within two miles of the Lindenwold Station in southern New Jersey (Allen, 1987). Another study concluded that the total benefits of reduced wait times as a result of transit in the New York metropolitan area equaled \$3.7 billion per year (Anas, 1993). Dunphy's study of residential prices in Southern California concluded that buyers would have to add 15 to 30 minutes to a daily commute in order to reduce a home purchase price by \$10 to \$15 per square foot (Dunphy, 1998).

Looking at the benefits of mobility, reduced congestion, and higher property values for the U.S. overall, Lewis concluded that for each \$1 invested in transit services, the public realizes \$5 in cash savings (Lewis, 1999). ¹¹ In Portland, the IBI Group determined that there has been \$1.9 billion in property development in the vicinity of the Portland Metropolitan Express system (Hack, 2002). ¹² A study by the University of North Texas, which also focused on total investment like IBI Group's study in Portland, found that between 1999 and 2007, \$4.26 billion in development projects along rail lines were attributable to the presence of DART (Dallas Area Rapid Transit). ¹³

As this list of studies implies, there is no standard measure of value for transit. Nonetheless, the majority of value capture researchers have selected the yield on

⁸ Allen, W. et al. "Value Capture in Transit: The Case of the Lindenwold High Speed Line," *Journal of the Transportation Research Forum*, Vol. 28, no. 1, 1987.

⁹ Anas, A. et al. "Land Values and Transit Access: Modeling the Relationship in the New York Metropolitan Area, An Implementation Handbook, U.S. Federal Transit Administration, 1993.

¹⁰ Dunphy, R. "The Cost of Being Close," ULI Working Paper 660, Urban Land Institute, October 1998.

¹¹ Lewis, D. et al. *Policy and Planning as Public Choice: Mass Transit in the United States*, 1999.

¹² Hack, J. "Regeneration and Spatial Development: A Review of Research and Current Practices," IBI Group, 2002.

¹³ Clower, Terry L. et al. Assessment of the Potential Fiscal Impacts of Existing and Proposed Transit-Oriented Development in the Dallas Rapid Transit Service Area, Center for Economic Development and Research, University of North Texas, November 2007.

property as the measure of value on which to focus. One reason for this is because in theory, most of the benefits of transit will be reflected in land value differences.

Another reason is because an assessment on the incremental yield on property is a potential source of revenue that can be harnessed by the public sector to fund transit

Yields on Property as a Measure of Value

infrastructure or related improvements.

Throughout the U.S., evidence from the research literature has demonstrated that access to transit increases the value of nearby property. Data in Tables 2.2 and 2.3 show a summary of studies from the San Francisco Bay Area, San Diego, Portland, Sacramento, Chicago, St. Louis, Washington, D.C., Atlanta, and Dallas. Fifteen of these studies reported that properties that were located near a transit station experienced a premium effect in terms of obtaining a higher value than comparable properties without transit access. The studies listed in the attached tables also confirm that increased value has been realized for both commercial and residential properties.

While in most cases the impact of transit is estimated to be positive, the extent of the transit premium ranges widely. For condominiums, the premium ranged from two percent to 18 percent in San Diego (2001), while for rental apartments the range was zero to four percent in San Diego (2001) to 45 percent in Santa Clara County (2002). In terms of commercial property, the summary table shows that the value premium for office uses ranged from nine percent in Town Center Washington, D.C. (1981) to 120 percent in Town Center San Jose (2002). Value premiums for retail property ranged from one percent in near Walnut Creek's BART station (1978) to 167 percent in San Diego (1992).

Table A2.2: Transit Investment Impacts on Residential Real Estate Values

Varia ble/Location	Premium Effect	Transit Type	Year	Source
ingle-family home sales price:		7,5-		
San Francisco Bay Area BART System	+17% w/in 500 ft of station	Rapid Transit	1979	Blayney-Dyett Associates/David M. Donibusch & Co., Inc. "Land Use and Urban Development Impacts of BART." San Francisco! Metropolitin Transportation Commission, 1979.
San Diega San Diega Trolley System	+2% w/in 200 ft of station	Light Rail	1992	VI-II Ranbow Appraisal Service, "Analysis of the Impact of Light Rail Transt on Real Estate Values," San Diego Metropolitan Transit Development Board, 1992,
Portland MAX Light Rail System	+10,6% w/in 1,500 ft of station	Light Rail	1993	Al-Mosaind, M. et al. "Ught Rail Transit Stations and Property Values: A Hedonic Price Approach." Transpodation Research Record, 1400:90-94, 1993,
Sacramento Sacramento Light Rail System	+6.2% w/in 900 ft of station	Lighi Roil	1995	Landis, J. et al. "Rail Transit Investments, Real Estate Values, and Land Use Change: A Comparative Analysis of Five California Rail Systems," Institute of Urban and Regional Development, UC Berkeley, 1995.
Santa Clara County VTA LightRoil	.10.8% w/in 900 ft of station	Light Rail	1995	Landis, J. et al. "Rail Transit Investments, Real Estate Values, and Land Use Change: A Comparative Analysis of Five California Rail Systems, "Institute of Urban and Regional Development, UC Berkeley, 1995.
Chicago METRA Commuter Rail System	+20% w/in 1,000 ft of station	Commuter Rail	1997	Green, A. The Effect of CTA and METRA Stations on Residential Property Values, Regional Transportation Authority, 1997.
St. Louis MetroLink Light Rail System	+32% w/in 100 ft	Light Rail	2004	Garrett, T. "Uight Rail Transit in America: Policy Issues and Prospects for Economic Development." Federal Reserve Bank of 3t. Louis, 2004.
Variable/Location	Premium Effect	Transit Type	Year	Source
Condominium sales price:	Tremen Encor	.750	,,,,,,	1000100
San Diego San Diego Trolley System	+2% to 18% w/in 2,640 fit of station	Light Rail	2001	Corvero, K. et al. "Land Value Impacts of Rail Transil Services Son Diego County," Urban Land Institute, 2002.
Apartment rental rate:				
San Francisco Bay Area BART System	+5% w/in 1,320 ft of station	Rapid Transif	1991	Bernick, M. et al. "A Study of Housing Built Near Rail Transit Stations: Northern California." In stitute of Urban and Regiona Development, UC Berkeley, 1991.
San Diego San Diego Trolley System	+0% to 4% w/in 2,640 ft of station	Lighi Rail	2001	Cervero, R. et al. "Land Value Impacts of Rail Transit Services San Diego Caunty," Urban Land Institute, 2002.
Santa Clara County VTA Light Rail	+45% w/in 1,320 of station	Light Rail	2002	Cervero, R. "Benefits of Proximity to Roil on Housing Markets: Experiences in Sonta Clara County," Journal of Public Transportation, Vol. 5, No. 1, 2002.

Sources: Combridge Systematics Inc. et al., Economic Impact Analysis of Transit Investments, Transportation Research Board, 1998, PriceWaterhouseCoopers, Review of Property Volus Impacts of Repid Transit Systems Through Volus Capture, Victoria Transport Policy Institute, September 2006.

Table A2.3: Transit Investment Impacts on Residential Real Estate Values

Variable/Location	Premium Effect	Type	Year	Source
Office	·			
Washington, D.C. Metroral System Downtown Washington Station	+9% w/in 300 ft of station.	Rapid Transil	1981	Rybeck, W. "Transit-Induced land Values," Economic Development Commentary, 16-20, October 1981.
Washington, D.C. Metrorall System	+14% w/in 300 ft of station	Rapid Transit	1981	Rybeck, W. "TransithInduced land Values," Economic Development Commentary, 16-20, October 1981.
Silver Spring Station				
Washington, D.C.		Rapid	1993	Cercero, R. et al. "Assessing the Impach of Urban Reil Transif: Local Real Estate Markets Using Quast-Experimental Comparisons," Transportation Research, 27A, 1:13-22, 1993
Metrorall System	+12.3% to 19.6% w/in 300 ft of station +11% to 15.1% w/in 300	Transit		
Allanto MARTA System	ft of station	Rapid Transit	1993	Cervero, R. et al. "Assessing the Impacts of Urban Rail Transit of Local Real Estate Markets Using Guast-Experimental Comparisons," Transportation Research, 27A, 1:13-22, 1993.
San Francisco Boy Area BART System - East Boy Stations	No premium effect w/m 2,640 ft of station	Ropid Transil	1995	Landis, J. et al. "Rail Transi Investments, Real Estate Yalues, and Land Use Change: A Comparative Analysis of Five California Rail Systems," Institute of Urban and Regional Development, UC Berkeley, 1995.
Dollas DART Station Áteas	+10% w/in 1,320 ft of station	Light Rail	1999	Weinstein, B. et al. "The Initial Economic Impacts of the DARTER System," Center for Economic Development and Research, University of North Texas, 1999.
Santa Clara County YTA Light Roil	+15% w/in.2,640 ft of station for commercial	Light Rail	2001	Weinberger, R. "Commercial Rents and Transports for Improvements: Case of Santa Clara County's Light Rail, "Lincoln testive of Land Policy, 2001.
Santa Clara County VTA Light Rail - Downtown San José Stations	+120% w/in 1,320 ft of station for commercial land in a business district	Light Rail	2002	Cervero, R. et al. "Transit's Value Added: Effects of Light Commercial Rail Services on Commercial Land Values," Presented at TRB Armsol Meeting, 2002:
/ariable/Location	Premium Effect	Transit Type	Year	Source
etai	Tremen Eneci		100	Source
San Francisco Bay Area BART System	+1% w/m 500 ft of station	Rapid Transit	1978	Falcke, C. *Study of BART's Effects on Property Prices and Rents. Urban Mars Transportation Administration, U.S. Department of Transportation, 1978.
San Diego San Diego Trolley System	+167% w/in 200 ft of station	Light Rail	1992	Vtill Rainbaw Approisal Service: "Analysis of the Impact of Light Rail Transit on Real Estate Values," San Diego Metopolitan Transit Development Board, 1992.
San Francisco Bay Area BART System - East Bay Stations	No premium effect w/in 2,640 ft of station	Rapid Transit	1995	Landis, J. et al. "Rail Transit Investments, Real Estate Values, and Land Use Change: A Comparative Analysis of Five Colfizania Rail Systems," Institute of Urban and Regional Development, UC Berheley, 1995.
Dallas DART Station Areas	+30% w/in 1,320 ft of	Light Roil	1999	Weinstein, B. et al. "The Initial Economic Impacts of the DART LF System," Center for Economic Development and Research: University of North Texas, 1990.

Sources: Combridge Systematics Inc. et al., Economic impact Analysis of Transit Investments, Transportation Research Board, 1998; PriceWaterhouseCoopers, Review of Property Value Impacts at Rapid Transit Stations, Richmond/Airport - Vancouver Rapid Transit Project, April 2001; Smith, 1 et al., Financing Transit Systems Through Value Copture, Vidorio Transport Policy Institute, September 2006.

Tables 2.2 and 2.3 also show that not every study of transit and property values has found a positive correlation. For example, a 1995 study by John Landis found that values for single family homes within 900 feet of light rail stations in Santa Clara County was 10.8 percent lower than comparable homes located farther from light rail stations.

The same study found that there was no value premium for office and retail property located within one-half mile of BART stations in the East Bay. 14

There are several possible explanations for these negative findings. For example, real estate market data in the Landis study were collected during the recession years of the early 1990s and reflect the depressed single-family home prices and sluggish commercial property activity of that period. With regional unemployment rates above 6.5 percent for much of the early 1990s, the level of traffic congestion was reduced to the point that the real estate market placed minimal value on adjacency to transit. In addition to the negative influence of regional economic trends, the lack of property value premiums found in the Landis study may also be attributable to the fact that at the time the single family home sales data were collected, many of the VTA light rail stations had only recently opened and therefore not enough time had passed to allow the benefits of accessibility to be capitalized into the value of nearby properties.

While there is no consensus in the literature on a definitive capitalization impact that is attributable to transit, the majority of the studies cited above indicate that, despite differences in geographic location, economic circumstances, and local real estate market conditions, the presence of transit produced a measurable impact on surrounding property values.

Conditions for Optimizing Transit's Value Premium

One major factor that influences the extent to which transit has a positive impact on surrounding properties is the system's regional connectivity and frequency of service. The primary benefit of being located near transit is the access it offers to places in the community or region. The more extensive the transit system, the more benefits there will be to surrounding properties. While people take transit for a variety of reasons and to many types of destinations, recent national survey data indicate that 59 percent of trips are work-related, 11 percent are school-related, nine percent are shopping and dining-related, and seven percent are socially-related. This proportion is very high compared to auto travel, of which work-related trips represent only 18 percent. Since much of the value of transit is directly related to the ability to use transit for commute trips, transit systems that do a good job in linking workers to employment centers have

¹⁴ Landis, J. et al. "Rail Transit Investments, Real Estate Values, and Land Use Change: A Comparative Analysis of Five California Rail Systems," Institute of Urban and Regional Development, UC Berkeley, 1995.
¹⁵ A Profile of Public Transportation Passenger Demographics and Travel Characteristics Reported in On-Board Surveys. American Public Transportation Association, 2007.

¹⁶ Pisarski, Allan E., *Commuting in America III: the Third National Report on Commuting Patterns and Trends*, Transportation Research Board (TCRP Report 110), 2006.

better potential to generate higher land values. Better accessibility is also a function of more frequent transit service, and as a result the frequency of service has a positive impact on property values.

In a 2004 study of transit-oriented development (TOD) in the U.S., U.C. Berkeley planning professor Robert Cervero points out that there are at least three other factors that influence the amount of value that can be created for TOD:¹⁷

- Good economy and healthy real estate market conditions. Good general economic conditions as well as a healthy local real estate market are essential ingredients to value creation because transit alone cannot provide enough of a magnet to attract development. What transit can do is to focus a portion of existing market demand at a particular location in order to leverage accessibility. Therefore, in healthy real estate markets that are experiencing strong demand, there will be a greater potential for property value appreciation near transit.
- Supportive public policy. The property value premium that transit generates cannot be realized unless there are supportive public policies in place that are targeted toward leveraging transit's added value through measures such as density bonuses, reduced parking requirements, and incentives for TOD. Good planning and supportive policies can help to maximize the overall value of property within a station area. Reduced parking requirements for office or residential development near transit can be particularly effective in supporting value creation from the standpoint of a developer's bottom line. Not only is parking very expensive to build, but reducing parking requirements can also leave room for more revenue-generating uses.
- Traffic congestion. Because it provides potential demand for TOD, as well as a built-in market for ridership, the existence of severe traffic congestion is another key element for value creation. When a region's residents and workforce population experience the daily traffic delays, automobile accidents, and excessive fuel consumption that characterize a congested road network, driving can become a less appealing option. A high level of congestion tends to encourage the political will of a region's voters and elected officials to support transit and TOD. In addition, rising gas prices and increasing concern about the environment will likely mean that transit will become an even more appealing option over time.

¹⁷ R. Cervero et al., Report 102, Transit Cooperative Research Program, 2004.

¹⁸ Belzer, D. et al. *Transit-Oriented Development: Moving from Rhetoric to Reality*, The Brookings Institution Center on Urban and Metropolitan Policy and The Great American Station Foundation, 2002.